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LOCAL CONTRACTIBILITY OF THE GROUP OF HOMEOMORPHISMS OF A MANIFOLD

A. V. CERNAVSKrf UDC 513.836

In this paper the group of homeomorphisms of an arbitrary topological manifold is considered,
with either the compact-open, uniform (relative to a fixed metric), or majorant topology. In the
latter topology, a basis of neighborhoods of the identity is given by the strictly positive func-
tions on the manifold, a homeomorphism being in the neighborhood determined by such a func-
tion if it moves each point less than the value of this function at the point. The main result
of the paper is the proof of the local contractibility of the group of homeomorphisms in the
majorant topology. Examples are easily constructed to show that this assertion is false for
the other two topologies for open manifolds. In the case of a compact manifold the three topol-
ogies coincide. In conclusion a number of corollaries are given; for example, if a homeomor-
phism of a manifold can be approximated by stable homeomorphisms then it is itself stable.

§1. Statement of the problem and formulation of the results

1.1. In this paper the local contractibility of the group of homeomorphisms of a metrizable mani-

fold Μ with a fixed metric p(x, y) is studied. We denote this group by § = $r> {M) and endow it with

one of the three topologies: compact-open, uniform, majorant. The group Sj>(M) when so topologized

will be denoted by IQJM), § {M), or § {M) respectively, or by §2T(M) if the topology is unspecified.

A basis of neighborhoods of the identity e = e{M) (the identity mapping) is given in § (M) by the

pairs {K, e), where e > 0 and Κ is a compact subset of M; the neighborhood determined by the pair

(K, () is denoted by Ω,, ,(e), and consists of all homeomorphisms h: Μ —> Μ such that p{x, hx) < e

for χ Ε K. A basis of neighborhoods of e in § {M) is given by the numbers e > 0; the neighborhood

determined by e is denoted by Ω (e), and consists of all homeomorphisms h such that p{x, hx) < e

for all χ £ M. In fyJM) a basis of neighborhoods of the identity is given by the continuous strictly

positive functions on M, which we shall call majorants: the neighborhood determined by the majorant

/: Μ —> (θ, oo) is denoted by Ω,(β), and consists of all h such that p(x, hx) < fx for all χ G Μ.

The main result of the paper is the proof of the local contractibility of § (M) for all manifolds

and of §c(M) for compact manifolds. However the exact sense of, at any rate, the first assertion

requires clarification. This is the main purpose of the first section. A complete formulation of the

results is given in subsections 13, 14, 21, and 22 of the present section and in §5- An outline of

the proof is given in subsection 1.26.

We denote by [X], IntA", and Ft X the closure, interior, and frontier of the set X in the manifold

M. By dM and lntM we denote the boundary and the interior of the manifold; 0({X) is the f-neighbor-

hood of the set X in M. We denote the empty set by Λ .
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288 Α. V. CERNAVSKII

1.2. It is easy to see that for all three values of τ the group §r(M) is a topological group, and

a topological group of transformations of M. One must verify the continuity of the three mappings

1) § r U f ) χ § r (M) — §rAf: (h,h')-*hh',

2) §rCW) — §rGW): A — λ" 1 ,

3) §TWxM-+M: (h, x) — hx.

The continuity of the first and third mappings is almost obvious, and that of the second is clear for

τ = u and τ = m. Let us verify the continuity of the second mapping for τ = c at the point e (cf. t 1 ]).

Let Ω» (e) be a given neighborhood of e in § (A/). Let X be a compact subset of Μ con-

taining Κ in its interior, and e a positive number less than e, so small that the image of Κ under

any (homeomorphic) e' -shift of Κ in Μ contains Κ in its interior. The existence of such an (' fol-

lows from homology considerations: it is sufficient to require that on FiK an e ' -shift be homotopic

to the identity mapping outside K. Then it is clear that if h £ Ω , , (e) then h l £ Ω (e).

1.3· Clearly, for compact manifolds the three topologies coincide. The topology r = u depends in

general on the metric in M, but occupies an intermediate position between the topologies τ = c and

τ = m (which are independent of the metric), in the sense that the identity mappings

are continuous (they are contractions).

1.4. Definition 1. An isotopy of the manifold Μ means a layer homeomorphism of Μ χ [θ, ll onto

itself.

Being a layer homeomorphism means that the isotopy Φ: Μ χ [θ, l] —< Μ χ [θ, l] determines

homeomorphisms (Φ)(: Μ --> Μ such that Φ{χ, t) = ((Φ)£χ, ί) for each point {x, t) £ Μ χ [θ, l ] . We

shall say that Φ joins the homeomorphisms (Φ)ο and (Φ)χ, or that it takes (Φ)ο into ( Φ ) Γ

(In order to distinguish the lower index which gives the value of the isotopy parameter i, we shall

always attach it to a parenthesis, so that it will always be the outermost index.)

1.5. Remark 1. It is sufficient to require that Φ be a one-to-one continuous layer mapping of

Μ χ [θ, ll onto itself, since from the theorem on invariance of domains, applied to the manifold Μ χ

[θ, l ] , follows the continuity of the mapping inverse to Φ (cf. [2]).

1.6. Our definition of isotopy does not depend on the topology in the group of homeomorphisms

§CW). It might seem that for the study of homotopic properties of these groups, for example local con-

tractibility, the definition of isotopies as paths in $Τ(Μ) would be more natural. As is well known,

the two definitions are equivalent for τ = c (see [3], [•*]). This is not so in the other two cases.

Namely, the group § {M) for a noncompact manifold possesses no countable basis, and moreover

if hi —> h is a convergent sequence of homeomorphisms then from some index on they all coincide

with their limit outside some compact set, the same for all of them. Indeed, otherwise there exists a

sequence of pairwise distinct homeomorphisms converging to e and a sequence of points {*.! with

no convergent subsequence, such that h.x. j= x ; . By this property of \x.! we can find a majorant /

with the property that fxi < pix^ hx.), and then all the A. lie outside Ω,(β), so that it is not true that

limA; = e. Hence a path in § (M) can only join homeomorphisms that coincide outside some compact

set. Thus in the general case §m(M) is not even locally arcwise connected when Μ is noncompact.

As regards the topology r = u, convergence in the sense of this topology is uniform convergence, whence it
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is easily deduced that if /: [θ, l] —> § iM) is a continuous mapping of an interval then there must exist

a function y U, t' ), i, ί ' € [0, l ] , defined on the unit square, such that y/it, t ) = y( i ' , i),

y (i, i) = 0 and y (ί, ί ' ) > 0 for t £ t' , and p{J{t)x, J{t')x) < y(i, ί ' ) for y € «W. Again, this condi-

tion is too restrictive.

1.7. We consider the set of all isotopies of Μ as a subgroup 3>(Λ/) of the group §(A/ χ [θ, l]),

and we topologize it as a subspace of §.(Λ/ x [0, l]). The group 3CW) with this topology is denoted

by 3 {M). (The direct product metric is taken in Μ χ [0, l ] . )

1.8. We introduce some further concepts and notation. We denote the unit of the group %AM)

(the identity isotopy) by Ε , or occasionally, if necessary, by Ε(Λ0. The isotopy inverse to Φ is

denoted by Φ " 1 : (Φ" 1 ) , = ((Φ),)"1. If for the isotopy Φ we have (Φ),* = hx for all t € [0, l] on the

set X C M, then we shall say that Φ is identically equal to h on X, and write Φ = h on X.

The support of an isotopy Φ is a set S = Si<l>) such that all the (Φ){ coincide outside S (but are

not necessarily the identity!).

As well as the product ΦΨ of isotopies Ψ and Φ (where (ΦΨ), = (Φ) (Ψ),), we shall also con-
t t t

sider their composition Ψ ° Φ, which is defined, provided only that (Ψ) = (Φ)ο, as the composition

of homotopies:

( ψ ο φ ) (ψ) for 0<t<Y2, ( ψ ο φ ) =(φ) for Y2 <t < 1 .
t Zt — — t Zt I — —

In addition, we shall need to consider die product ΦΛ of an isotopy and a homeomorphism, which

we understand as the product of Φ and the isotopy Ψ = h.

Finally we shall consider infinite compositions. If a sequence of isotopies Φ , Φ , · · · is given

then their infinite composition is defined only if ( Φ [ + , ) ο = (*&i\> l 2. 1> a n d l t IS t n e layer homeomor-

phism Φ: Μ χ [0, l) --> Μ χ [0, l), where (Φ)( = (Φ,-) ( ί + 1 ) ( ( i - i + 1 )

 f o r ' £ [ ( ( - l)/t, i/(i + l)]. We

shall say that the sequence {Φ. S converges if its infinite composition is defined and extends to a

continuous mapping of Μ χ [θ, l] onto itself. For this it is obviously necessary and sufficient that

there should be a continuous mapping (Φ) : Μ —> Μ, where (Φ)^ = 1ίπι(Φ.) , in the sense τ= c, for

any sequence t{, where all the ti £ [0, l ] . We call (Φ)χ the limit mapping, and Φ, completed by

(Φ). in the way described, the limit pseudoisotopy. If (Φ) is a homeomorphism then Φ is an isot-

opy, by Remark 1 (see 1.5), and we shall also call it the limit isotopy.

1.9· Remark 2. For any neighborhood Ω(β) in the group fyT(M) there is a neighborhood 0(E) such

that for Φ € D(E) all the homeomorphisms (Φ)( lie in Ω(ε).

In the case τ= c, for a neighborhood Ω χ f (e) in § JM) we take as the required 9(E) the neigh-

borhood Ω χ χ Γ 0 ι (Ε) p| 9c(iW) in ^c(M). In the case τ = u, for the neighborhood Ω (e) we take the

neighborhood Ω^Ε) p| 3^ (M) in S^Ctf). In the case τ = Μ, for the neighborhood Ω,(β) we take the

neighborhood Ω,γ{Ε) f] %m(M), where / is the majorant equal to fix) for all points ix, t), t € [0, l ] .

We note also that for each majorant / on Μ χ [θ, l] there is a majorant / ' on Μ such that

fix, t)<f'x for a l l χ € M.

1.10. We now pass to definitions concerning homotopies in § AM).

Definition 2. A subset A C ξ Γ deforms on Β C § r into Τ C § r (A |J Γ C B) if there is a continu-

ous mapping -f: A —> 3 f such that for h £ A we have
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2) (Γ (Λ)), g B for * e [ 0 , l ] ;
3)

We now introduce the main concept of this paper.

Definition 3· The group § AM) is called locally contractible if there is a neighborhood of e in

§Γ(Λ/) which deforms on %>T(M) into e.

1.11. Remark 3- In this definition of local contractibility we may always assume that T(e) = E,

since any contraction T(/i) can be replaced by the contraction T' (/l) = (T (e))"1 Τ (/l), having this

property. Further, an arbitrary neighborhood O(e) may be taken as B, provided that a sufficiently

small neighborhood of e is taken as A = Ω (e). For by Remark 2 there is a neighborhood 0(E) C 3

such that for each isotopy Φ € S all the homeomorphisms (Φ)( € Ω(β). Since Υ is continuous, there

is a neighborhood Ω (e) such that ΤΓ(Ω') C D. Thus if $3̂  is locally contractible in the sense of

Definition 3 then for a given neighborhood Ω(β) there is a neighborhood Ω ' (e) which deforms into

e in Ω(β). This agrees with the usual definition.

On the other hand, one can weaken the definition and require only that some open subset of § r

deforms in ξ Γ into some point of 5 .̂.

1.12. We make the following further two definitions.

Definition 4. A subset A C Sj>AM) is called contractible if it contracts in itself to a point.

Definition 5. The group S}T{M) contracts locally into its subset A, containing e, if there is a

neighborhood Ω(β) which contracts in § into A with e fixed.

Finally, we denote by Δ(Λ") the subgroup of homeomorphisms that are fixed on the subset X C M.

1.13. We now formulate the main result of the paper.

Fundamental Theorem. For any metrizable manifold Μ the group § {M) is locally contractible.

1.14. In fact we shall prove an essentially stronger result (see Proposition (B) in 1.22). In the

compact case the three topologies coincide, as we have already said, and so as a corollary of the

fundamental theorem we have

Theorem 1. If the manifold Μ is compact then the group § {M) is locally contractible.

1.15. We recall that the local contractibility of the group § c was hitherto known only for two-

dimensional compact manifolds, and also its local p-connectedness for all ρ for compact three-dimen-

sional manifolds (results of Hamstrom [5], [6]). i n addition Kister [ 8], by modifying the well-known

argument of Alexander [ 7], proved the local contractibility of § (/?") for Euclidean space R" with

its usual metric.

1.16. If a manifold has a boundary-, then by applying the Fundamental Theorem we can find a

contraction Υ : Ω (e) —* 3 m (M) of some neighborhood Ω(β) into e in Spm(M), such that if h £ Ω(ε) f|

MdM) then Τ (A) = E on dM.

For let Ω" be a neighborhood of e° - e(dM) in §m(AW) for which, by the Fundamental Theorem,

there exists a contraction Τ : Ω —>3m(dM) into e , where by 1.11 we may assume that

Τ (ed) = ea. Now let Τ : Q(e) -> 3m(M) be a given contraction of some neighborhood Ω(β) into

e{M) such that if A € Ω(β(Λί)) then h^ = h\^M € Ω . For each homeomorphism h" which is the re-

striction of a homeomorphism h in Ω, and is considered as such, it induces an isotopy Τ (h). Thus
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for each A € Ω we have two isotopies on dM for ^ \gM, namely Yd (h ) and Τ (h). This gives for

each A € Ω a layer homeomorphism

Tlr{h):dM X [0,1] X [0,l]-^dM X [0,1] x [0,1],

depending continuously on h:Yd

tit'(h)x = (Yd ((Yd (h))t)t>)x, x^dM, where To,o(/l)=/l0 and

•Ti.f'(ft) = YfIi(A)=e . Constructing in the square [0, l] χ [θ, l] the segments joining the point

(θ, 0) with the points of the sides 1 χ [θ, l] and [0, l] χ 1, we obtain a family of isotopies Ys (/ι)

of the boundary of Μ depending on h(r = m) and on s € [0, l] (r= c), such that Yd
a(h) = Yd(h) an^

ϊ ί(Α) = Td(hd). We recall that if hd = ed then T 5 (hd) = E(dM).

According to Brown [9] there is a homeomorphism G: dM χ [θ, l] £ Q, where Q is a closed

neighborhood of the boundary. Let G(dM χ θ) = <9Λί. Let Q = G(dM χ s), and let Ρ : dM χ s —* cM/

be the homeomorphism induced by the projection of the direct product dM χ [θ, l] —> dM. Now con-

struct a contraction Τ : Ω—*3m(/W) as follows: for A € Ω the isotopy Υ(h) is equal to T*(/l)

outside Q and is equal to Υ (h) • G • P71 • (Yd (/l))"1 · Y?-s(A) · Ps • G1 on Qg. One verifies directly

that on Qo = dM the isotopy Υ (h) is equal to Yd (hd) and so it is equal to E(dM) if h" = e . At

the same time Y(/l) is equal to Τ (h), on Q , and so the two definitions are equivalent.

1.17. We can derive the Fundamental Theorem for manifolds with boundary by applying it to mani-

folds without boundary, but in the somewhat stronger form:

If D is α closed subset of Μ and 0{FtD) is a neighborhood of the boundary of D, then the sub-

group A(D) C § (M) is contractible into e in A{D\O(FtD)).

(We note that when D is empty this assertion becomes the Fundamental Theorem.) For the proof

we construct, as in 1.16, a homeomorphism G: dM χ [θ, 3] ~ Q, where Q is a closed neighborhood of

dM in M, with GidM χ 0) = dM. Again let Qg = G(dM χ s) and put Q[tv «.,] = G(dM χ [ij, i.,]). Let

<7£: Q\t, 2] ~ Q[0, 2] be the homeomorphism induced by the linear homeomorphism [t, 2] —» [0, 2]

with the point 2 fixed, where t £ [0, l ] . Extend q( identically onto M\Q[0, l\. Now apply the

Fundamental Theorem to dM and construct a contraction Τ '• Ω —* Sm{dM) for some neighborhood

Ω = Ω(β ). Now let Ω be a neighborhood of e{M) so small that for A € Ω we have

2) hQ D Q[0, 2].

Now construct an isotopy T x (rt) for A 6 Ω as follows:

{Y1(h))t=h on Q,

{Ti{h))t = qT^hqt on Q[t, 3],

(Ti {h))t = GPJ^Pfi-1 o n Qs, s e [0, /],

where Ρs: dM χ s —> dM is induced by the projection of the direct product. These definitions are

consistent, since q = e on Q,, and hQ C M\Q[0, 2] by condition 2), and so q = e on hQ . Thus

on Qi the first and second definitions give (Y1(h))t = h, t£[0, 1]. Further qt=PsG~l on <2t, and

so the second and third definitions give the same on Q . Thus we obtain an isotopy. It is clear

that Yj (h) depends continuously on A, with γ (β) = Ε. The isotopy Y1 {h) takes Λ into the homeo-

morphism (Y1(h))1, which is equal to GPJ^PsG'1 on Qs, where s € [θ, l ] .

Now let Y2(h) be the isotopy defined as follows:
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\ , π,
(Γ2(ft)), = GP71 (Td(h%PsG-i on Q [0, V2],

(T a(ή)), = GP71 (T a (h%t (1-s)PsG-' on Qs, s 6 [V2, 1 ]

It is again easy to verify that the three definitions are consistent. Namely, the third definition coin-

cides for s = 1 with the first, and for s =? % with the second. AgainT2(/i) depends continuously on

h, and Τ2(Λ)= Ε, if h - e. The composition of the isotopies Y\(ft) and Y2(/l) is defined, and takes

h into a homeomorphism which is the identity on Q[0, Yj\. Now we apply the Fundamental Theorem,

with the refinement mentioned at the beginning of this subsection, to Intili, with Q[0, lA\ taken as D

and QlH, %], say, as O(FrD). For some neighborhood fi(e(lntA/)) we have a contraction

Y 3: Ω(β) Π Δ(<?[0, V2])-> 3t(IntiM) in Δ(ζ)[θ, ^]), which can be extended to the boundary as the

identity. It is obvious that for h = e the composition Y t(e)o Y2(e) = E. Now there exists a neigh-

borhood Ω(ε) C Ω so small that if h € Ω then the composition γ (fl)° Υι(Ό t a k e s h into a homeo-

morphism lying in Ω. So the composition Tx(ft) ο T2(/l) ° Υ3(Ί), is defined, depends continuously on

A, and takes h into the homeomorphism which is the identity on the whole manifold.

Thus we may validly assume that our given manifold is without boundary.

We note if we consider only homeomorphisms which are the identity on some closed set D, then

by a slight strengthening of this reasoning we could show that the resulting improvement of the theo-

rem is again valid for manifolds with boundary if it is valid for manifolds without boundary.

1.18. In the case of a noncompact manifold Μ one may speak of the local contractibility of

§c(M) or Sr5 {Μ) only if the topology of the manifold is sufficiently simple at infinity. For example

let Μ = U°° Τ., where each Τ. is a two-dimensional torus with two holes and 7 . Π 7 . ,, = y. .,,
1 = 0 t ' ι ι ' ' i + l ' ι + 1 '

where y. and y + , are the boundaries of the holes in Τ. for i > 0, the diameter of Τ. being further

assumed l e s s than l/t . Define homeomorphisms h.: Μ—> Μ as follows: if Η. is a cylindrical

neighborhood of yi in T. then h. - e on M\H. and h. is a twist through 2π on //. . Then the curve

which is the product of the meridians of the tori Τ._ and Τ. is π.Μ is not homotopic to its image

under the homeomorphism h., which is the product m. I. m.l.1,, where m. is the meridian of Τ.
r ι ' r l~\ ι~\ ι i~V ι ι

and /. is the class of γ.. (We remark that the group π Μ is freely generated by the meridians m. and

parallels p. of the tori and also ln, with I. = ί H'i_,[p . /, m. ,].) Thus none of the homeomorphisms

h. is even homotopic to e, although it is clear that limA. = e in the topologies r= c or r = u, and so

the groups ^ JM) and ^J,M) ate not even semilocally linearly connected.

1.19· On the other hand, if an open manifold Μ has finitely generated homology and is simply

connected at infinity, then in the case when dim Μ > 6 [ 1 0 ] , or in the case of a three-dimensional

irreducible Μ t 1 1 ] , there is a compact manifold whose interior is homeomorphic to M. (If the condi-

tion of simply-connectedness at infinity is omitted then this is not in general true [2].) Thus although

in the case of an open manifold we cannot give a definitive answer when τ = c or τ = u, we neverthe-

less see that with a high degree of generality we can restrict ourselves to the case when Μ is the

interior of a compact manifold, and we now consider this case.

1.20. Let Μ = Int/V, where Ν is a compact manifold with nonempty boundary. Suppose further

that the metric of Μ is induced by that of N, in the case τ = u. As before, let G: cWV χ [θ, l] ~ Q

be a homeomorphism on a closed neighborhood Q of the boundary of Ν and let G{dN χ θ) = cW. We

note that Κ = [N\Q] is a compact subset of Μ = Int N. Consider the subgroup A(K) C § rU/), where
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τ = c or τ = u. For t € (θ, l ] define a homeomorphism qf: Q —> Q by the formula q (G{x, s)) =

G(x, sl/t), where χ € dN and s € [0, l ] . If A € A(/0 let

(Φ (h))t = </ΓΗ on Q\dN for / 6 [0, 1 ],

(<D(A))f=e on .V\G for /e [0,1],
(Φ (/l))0 = e on the whole of M.

This defines an isotopy Φ(Α) on M, depending continuously on h. Thus &(K) is a contractible sub-

group for r = c or τ = u. This reasoning shows that in the present case the local contractibility of

§ (M) or § (Λ/) is a consequence of the following more general assertion.

1.21. Proposition (A). For each compact subset Κ of the manifold Μ and for all values r= c,

u, or m, the group !ζτ(Μ) is locally contractible in &r{K).

As was shown in 1.20, this implies

Theorem 2. If the manifold Μ is the interior of a compact manifold N, then § (M), and also

§ {M) if the metric of Μ is induced by that of N, is locally contractible.

In fact we shall prove the following assertion, essentially more general than (A), from which we

shall also derive the Fundamental Theorem.

1.22. Proposition (B). // C and D are closed subsets of the open manifold M, then for each

neighborhood 0 = 0{C) and each neighborhood 0' = 0 ' (FrD f| C) there exists a strictly positive

function f on 0, such that for each homeomorphism h for which p{x, hx) < fx, χ € 0, and which is

the identity on D, there is an isotipyY (h) such that

1(B). Τ(h) depends continuously on h',

2(B). (Γ(Λ))0=Λ;
3(B). T(h) = h on M\O;

4(B). (T(ft))i = e on C\
5(B). T{h) = e on D\O'\
6(B). if h = e\n, then (Γ(h)\ = e o-Ό'

In the case of a compact C condition 3 also ensures the continuous dependence of T"(/l) on A

in the topologies r= c and r= u, if it is known for r= m. Therefore Proposition (A), together with

Theorem 2, follows from (B) (take D empty and C = K).

1.24. Let us derive the Fundamental Theorem, together with the improvement given in 1.17, from

Proposition (B). As we explained in 1.17, we may restrict ourselves to the case of a manifold with-

out boundary.

In (B) we put C = O(C) = M, and let D be any closed subset of Μ and 0 ' an arbitrary neigh-

borhood of its boundary. By (B) there exists a majorant f on Μ such that for each homeomorphism

h € Ω,(β) f] A(D) there is an isotopy Ϊ*(Λ) with the properties 1—6 (B). From properties 1, 2 and 4

it follows that Τ(Κ) is a contraction of Ω,(ε) f) A{D) into e, and from 5 follows the above-mentioned

improvement. Properties 3 and 6 are introduced for use in the proof by induction.

1.25. Remark 4. We note, in particular, that if Fr D f] Fr C = A then Τ (h) may be so constructed

that (T (h)\ is the identity on C \J D.

1.26. Proposition (B) is proved in the next three sections. In §2 we reduce it to the local case,
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which we call the Local Theorem. In §3 a lemma is proved which is the kernel of the whole proof, and

which we call the lemma on correction of homeomorphisms. At the beginning of §3 a description is

given in general terms of the main ideas of the proof. In §4 the Local Theorem is proved on the basis

of the lemma. Finally, §5 is devoted to corollaries and unsolved problems.

§2. Reduction of Proposition (B) to the Local Theorem

2.1. Notation. In Rn we introduce a system of Cartesian coordinates with origin ο and axes

ox., 1 < i < n. We shall denote the cube {x\ \x.\ < r; 1 < i < n\ by /" and the unit cube /" by /".

We take η = dim Μ.

2.2. First (subsections 2—5) we shall reduce (B) to the case when C is compact. Represent Μ

as a union U._.K., where the K. are compact, such that

ΚιΓ\Κι- = Α, for | i — t ' | > l , (1)

Fr/CiriFrKr =Λ, for ίψΐ'. (2)

From these two conditions it follows that

Fr K,c

Such a representation of Μ is possible because we have assumed that it is metrizable, and so it

is a locally compact paracompact space.

Let 0 be a neighborhood of C such that

' (5)

There ex i s t s such a neighborhood because C is a closed subset of Μ in 0, and Fr D f] C i s a closed

subset of Μ in 0 '. Put C. = [0] f]K.. We observe that

(Fr Ct) Π C c Int (Q-, U C t + 1). (6)

Indeed, Fr C. f| C C Fr Κ. f] C, since C C Int[0], and now one applies (3). Choose numbers e > 0 so

small that

[Oe {(C i)]n[O e f .(C| ')J=A I for | i - i ' | > 1, (7)

[°ε(· {Ct)] Π Ki' = A, for | i - i ' | > 1, (8)

(9)

' . (10)

Conditions (7) and (8) can be satisfied by (1), condition (9) by (4), and (10) by (5)·

2.3- First consider C 2 £ for i > 1. Choose numbers η 2 ; > 0 so small that

lCallcO' (11)

and the sets [0 (Fr D f] C_.)] are compact and only a finite number intersect each compact set.

This is again possible because FrD f| C is a compact subset of Μ lying, by (5), in 0 .
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Now assume that Proposition (B) is valid in the case of a compact C, and apply it with C .

taken as C, 0 (C .) as 0, and 0 (Fr D f| C ) as 0 ' . We obtain a number δ ο . > 0, and, for
e 2 t •" w 2 i ^ l 2-1

each homeomorphism A which moves the points of 0 (C ) less than δ 9 and is the identity on

D, an isotopy Ύ21 (h), satisfying conditions 1—6 of (B) with the given substitutions made. The

support of this isotopy is [0( (C.,.)], and by (7) these sets are mutually disjoint, while by (8) they

are compact and only a finite number meet each compact set. Then obviously for every h moving

the points of each 0 (C .) less than δ , and which is the identity on D, an isotopy T e v (h) is

defined which on O( (C2j) is equal to Ύ21Φ), and on M\U°°= 1O f .(C2?
 l s e c l u a ^ t o ^· This

isotopy has the following properties:

1 (ev). T e v (h) depends continuously on A;

2 (ev). (Tev(A))0 = A;

3 (ev). Tev(ft)=A on A1\jJ Oe2/(C2i);

4 (ev). ( T e v ^ ^ e on \J C2i;
i=i

5 (ev). Tev{h) =e on D \ \J Onn (Fr D f] Cu);
1 = 1

6 (ev). (Tev(h)\ = e on Οε2. (C2<), if h = e on C\ 2 i(C 2 l).

Conditions 2—6 (ev) follow directly from the definition of T e v (A) and the corresponding proper-

ties of the isotopies Y2i(h). Condition 1 (ev) is easily deduced from the fact that each T2j (h)

depends continuously on h, and that only a finite number of the supports of these isotopies inter-

sect each compact subset of M.

2.4. We now turn to the C 2 . + 1 (t > 0). Put Dod = D\ U ^ O (FiDf]C2). We note that

CO

FrD o d Π U CidO'. (12)
1 = 1

For, by the condition on the set [0 (Fr D f] C .)], their union is closed in M, and lies by (11) in

0', and by (5) Ft D f] C . CO'. At the same time Fr D Λ C FrD Μ υ°°_Ί [0 ].
ι o d ι — 1 7̂ 2 £

Let ^ 2 i + 1 = C2[. U C2i+2 U ̂ od' a n c ^ ^ e t t n e nurabers i? 2 i + 1 > 0 be so small that

0 n r i + 1 ( F r D o d R C s ^ O c O ' , (13)

0 n 2 i + 1 (Fr((C:, U C 2 ^ 2 )\Z) o d ))n DoaCl0\ (14)

0 η ; £ + 1 ((Fr Cz, U Fr C 2 i + 2) Π ^ - i ) Π C C C s i + i , (15)

0 η 2 ί + Ι ((FrD O d\(C 2 ,UC 2 i + 2 ))nC s i + 1 ) Π C··/ Π ^ Π O6 2 i + 1 ( C ; i + 1 ) c C 2 i + l . (16)

Condition (13) can be satisfied because FrD |~| C is a compact subset of Μ lying, by (12), in

0 ' ; condition (14), because Fr((C 2 . U ^ 2 ί + 2 ) \ θ ο ( ) ) Π D o d C F r D Q d Π (C2 . (J C2 ,+ 2) and by (12);

condition (15), by (6). For (16) we observe that [Fr/) o d \C 2 [ . ] f] C2£ C F r C 2 ; , and it remains only

to apply (6), since ° e 2 [ + 1 (C2 , + J ) R C 2 ._t = Λ by (8).
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We again apply (B), this time taking C 2 i + 1 for C, D 2 i + 1 for D, 0( ( C 2 i + 1) for 0, and

0 (FrD . 0 C-. . ) for 0 ' . We find a number δ-.j., such that for each homeomorphism
7 ) 2 i + l 2 i + l ' ' 2 i + l 2 ι τ ι

f 0 ( C ) b l h δ d h i h i h i d i £* h
) 2 i + l

moving the points of 0 (C ^ + 1 ) by less than δ, and which is the identity on £* 2 ; + 1 , there is an

isotopy T2/+1 \h) with the properties 1—6(B) when the substitutions have been made. By 1—6 (ev)

there exists a number δ . + such that if the homeomorphism h moves the points of 0 Λ ^ 2 ; a n ( ^

°<2l+2{C2i+2) l e s s t h a n δ2ί+ι t h e n (TTevW)! moves the points of 0^ ,(C2 .) \J 0^ . + 1 ( C 2 i + 1 ) less

than δ 2 ; + 1 > If, moreover, A moves the points of 0( ^ 2 i + p ^ e s s t^mn ^2t+l' t ^ l e n

true for (Yev(h))v , since ( T ^ A ) ) ^ on 0 ^ ^ ( C 2 i + 1 ) \ ( 0 f 2 .(C, .) U % . ^ ( C , j + 2 ) ) . Thus for

(Tev(/l))i the isotopy T 2 i + 1 ( ( ^ e v ( ^ ) ) 1 ) is defined. Let h be a homeomorphism which is the identity

on D and moves the points of each 0 (CL.) less than δ 2 . = πιίη(δ2., δ 2 · + . , δ 2 ί ), and the points

of each 0 (C,.,,' less than δ Λ . , , . Then for h the isotopy Υ {h) is defined and for
f 2i+l 2i + l 2J+1 r · ' ev '

(ϊ*ε ν(Α))1 all the isotopies Y2i+1i{Yεν(Η))]), i > 0, are defined. So these isotopies are defined if

h 6 Ω,(β) f| Δ(0), where / is a majorant which is less than δ. on 0 (C ). Since, as we know, the

closures of the 0 {C ) are compact and only a finite number of them meet each compact set, such a

majorant can be constructed. Now, as above for the even case, we can construct for each A € Ω ( e) η

\(D) an isotopy Yod(h) which coincides with T2if 1 ((T e v (/l))i), o n 0 ( C + ) , and coincides

identically with (Yev(A))j outside U°°= 10 f (C 2 ( . + ). The isotopy Yod(h) has the properties:

1 (od). Tod (A) depends continuously on >̂

3 (od). TOd(ft)s(rev(ft))i onM\,U
i_—0

CO

4 (od). {YOd(h))1 = e on y C 2 / + i ;

oo

5 (od). r o d ( A ) s e on Π {D2i+i\Om+l(?r Dn+i Π C2/+i));

6 (od). (Tod (A))i = e \o, if ft = e \o •

Properties 2—5 (od) follow from the definition of Yod(h) and the corresponding properties of the

Υ21+1 {h); property 1 (od) follows from the continuous dependence of all the T 2 i + 1 ( ( Ye (h)) ) on

h, since only a finite number of the supports of these isotopies intersect each compact set; and

6(od) follows from the fact that, by 6(ev), if h = e then (T e y(A)) 1 = e, and so all the homeomorphisms

r 2 . + 1 ( ( r e v ( A ) ) 1 ) = e o n 0 .

2.5. In view of 2(od), the composition Y"ev(A) CYod(h) is defined, and this we take as Y'(h). Let

us show that it has the required properties. Property 1(B) follows from l(ev) and l(od); property

2(B) is 2(ev) and 6(B) is 6(od); 3(B) follows from 3(od), 3(ev), and (9). We now verify 4(B). First, by

4(od), (Y(h))1 = (Yod(h))l = e on U~Q C 2 ( + 1 and so on I T = O (C Π Κ2 . + χ ) . On the other hand

(T(A))j = e on C \ U T L 0 O £ 2 . + i ( C 2 . + 1 ) , by 4(ev) and 3(od).

Noting that O f 2 . + i ( C 2 i + 1 ) n O e 2 . , + i ( C 2 . / + 1 ) = A if i ji i ' (see (7)), we see that it is sufficient

to consider (Tih)) on
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cno e 2 / + 1 (c 2 i + 1 ) \c 2 / + I

c ((c η c2i η oe2/+1(c2i+i))\ c«+i) υ ((c η c2 i + 2n °^ i+i (c2 i +,))\c2 i + J).

We consider only the first term, since the second is similar. By 5(od), (T (h)) 1 = (Toa(h))1 =

0 e 2 i + I (C 2 / +i) Π C Π φ 2 ί + ΐ \ Ο η 2 / + Ι ( F r D 2 i + 1 f] C2/+.,)) 3 0 β 2 / + Ι (C 2 / + I ) Π C*

2 i + 1 Π C2 i + 1) 3 0 ε 2 ί +

((Fr C 2 i [ j FrC 2 i + 2 ) f| C 2 i + , ) \ 0 η 2 / + ,((Fr Dod\(C 2 i U C 2 i + 2 )) Π C 2 I + ,)).

But by (16) the last term lies in C2i+ , and since (T(A)) = e on C . + J we obtain that (T(A))1 = e

on ° i 2 i + 1 ( C 2 ; + 1 ) Π C n(C2i)\Ov2\(FrC2i U F r C 2 £ + 2 ) Π C 2 i + 1 » , and, by (15), on O e 2 . + i ( C 2 < + i ) Π

C Π (C2i^C2i+?' a S r e c l u i r e d ·
We now verify 5(B). By 5(ev), for t < ]/2 we have 0" (A))< = (T e v(A)) 2 f = e on D o d , and so, by (11), on

D\0'. For H^^l .bySiodJ .mAW^ir^A^.^e on 00<,\"7=ο°η2ί + 1 (Fr/?2£ + 1 Π C2i+1),

and since D , D D\0 it is sufficient to show that for all ι'
ο α

£Od Π 0 η 2 ί + 1 ( F r D 2 l > 1 Π C2t+l) C 0'.

But

Π O ^ . + 1 ( F r D 2 i + l Π C2i+l)

d 0 η 2 / + 1 ( F r D o d Π C 2 1 + I ) U (^od Π Ο η 2 ί + 1 (Fr(C 2 / U C 2 i + 2 \ D o d ) ) ) ,

and (13) and (14) can be applied.

Thus we may suppose in the statement of (B) that C is compact.

2.6. Now we shall reduce (B) to the case when Μ - R". Let \Q{, ^i jLj be a finite covering of

the component set C by Euclidean neighborhoods; that is, q.: Rn —> Μ is a homeomorphic mapping

and Q. = qtR
n, with C C \ik. = lQ.. We suppose that the [Q.] are compact and that

U Qi(Z0. (17)

We shall construct the required isotopy Τ (A) as the composition of isotopies ΨΧΑ), each having

support in one of the Q. and satisfying specific conditions similar to those of (B). By means of q.

the construction of ^ fJi) will be transferred to R". This reduction will be carried out in 2.7—2.10.

2.7. In constructing the isotopies Ψ.(Λ) it will be convenient to assume that

which of course we can do without loss of generality. We shall also assume that the Q. lie in a suf-

ficiently small neighborhood of the compact set C so that

FrDfl U [Qi]dO'.
£=I
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Condition (19) can be satisfied because FrD f] C is a compact subset of 0 .

Take k more neighborhoods 0 ; = O.(FrD f| C) such that

[Oi lcOt+iCZO' , (20)

which is possible because FrD f) C is a compact subset of 0 . Further, let

U [Qi]dO', (21)

which is permissible by (19)·

Also take numbers y ; > 0, 1 < i < k, such that

For 1 < ί < A; we shall successively construct numbers δ ; > 0, δ £ + . < δ ; , and, for each homeo-

morphism A that moves the points of 0 less than δ. and is the identity D, an isotopy Ψ .(A), in such

a way that the following conditions are satisfied:

1 (Ψ). Ψ.(λ) depends continuously on A;

2 (Ψ). (Ψ.(λ))ο = (Ψ._1(Α))1 for i > 2, (^(A)),, = h;

3 (Ψ). Ψ.(Α)=(ψ._1(Α))1 for i>2 on M\Q., Ψ^Λ) = Λ on , ΐ Λ ^ ;

4 W . (Ψ.(Α))1 = β ο η υ ; , = ι ί . , / ^ . ;

5 (Ψ). Ψ.(Α)= e on D \ 0 . ;

6 (Ψ). (Ψ/Α))1 = e on 0 if A = e on 0.

2.8. Let us show that if numbers δ. and isotopies Ψ. with these properties have been con-

structed then we m a y take the required function f as equal to δ^ on the whole neighborhood 0, and

the required isotopy T(A), for homeomorphisms A which move the points of 0 less than δ, and are

the identity on D, as the composition Ψ (Α) ο . . . ο ψ^ (h).

We note that for such a homeomorphism all the isotopies Ψ.(Α) are defined, and by 2(Ψ) their

composition is defined, with (T(/l))0 = h, so that 2(B) is satisfied. Properties 1(B) and 6(B) follow

immediately from 1 (Ψ) and 6(Ψ) respectively, property 3(B) follows from 3 W by (17), 4(B) from

4(Ψ) by (18), since (T(/l))x = (Ψ,(Α)),, and 5 (B) from 5(Ψ) by (20).
ft χ

2.9· Arguing by induction, suppose that δ . _ , and Ψ have already been constructed. Thus

for each homeomorphism A that moves the points of 0 l e s s than δ . _ . and is the identity on D we

have a homeomorphism A (equal to A for i = 1 and to (Ψ_,(Α)) for i > 2) with the properties

1 (h). A depends continuously on A;

2(h). A._1 = e onU^v/^.UUAfW;

3(h). h._x = e on 0 if A = e on 0.

If i > 2 then 1 (h) follows from ΐ(Ψ), 2(h) from 4(Ψ), and 3(h) from 6(Ψ). If i = 1 then 1 (h)

and 3(h) are trivial, while 2(h) reduces to the condition that A = e on D.

Thus our construction can be started.

2.10. We pass to the construction of Ψ.(Α) in Rn by means of the homeomorphism q.. We shall

assume the following proposition, which will be proved later (see 2.11).

Proposition (C). If D is a closed subset of Rn, then for every neighborhood 0 = O(FrD f| /")
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there exists α δ such that for each homeomorphic 8-shift g : ln —> Rn which is the identity on

D f] ln there is an isotopy ψ(§) of the space R" such that

1 (C). *P(g ) depends continuously on g ;

2(C).

3 (C).

4(C). ^ ^ ^ ^

5 (C). $(g) = e on D\0;

6 (C). Ψ<£)= eifg=eon /».

We take as D the set g'1 ( ( U ^ g f , / ^ + y . _ ) (J (OVO-.j)), and we let 3 be a neighborhood of

Fr D Π 1η

2 so small that

(23)

<7i(D\0)=)'u ίί'/ϊ+γ, ΠΙΟ/]· (24)

Condition (23) can be satisfied because q. (FrD f| /") is a compact subset of Μ not intersecting

D\0.. In fact,

^ ^ ' u ' ^ ^ n lQi\

(Fr(D\Oi_,) Π [Q*]) U([Fr ^'u^i'/Va ) \(/?\0i_,)] Π [Qi]).

But [0£_j] C 0i (see (20)), and therefore if the intersection of the second term with D\O{ is non-

empty then it lies in the first. At the same time Fr(D\O ._j) f] [0 .] C (Fr D f] [<?;!) U F r 0

£ - i · H e r e

both terms lie in 0 . (the first by (20) and (21), and the second by (20)), and so neither intersects

D\0.. Condition (24) can be satisfied because U^T^J 9 ^ / ^ . C l n t U J T ^ j 9 . , / ^ + r . _ , by (22). We

now find a number δ by (C). Also let δ < 1. Now if g is a δ-shift of l\ in R" then gl\ C ln

y Let ~E> 0 be so

small that if the diameter of a set in a.I" is less than δ then that of its inverse image in VI is less

than δ . Further, let δ be so small that O-jiqJ1^) C qj^- Then if a homeomorphism h of the mani-

fold moves the points of Q. less than δ, the homeomorphism g = q. h q. is defined on I'l, moves

points less than δ , and by 2(h) and the definition is the identity on D. Thus the isotopy Ψ(#) is

defined, with properties 1—6(C).

By 1 (h) and 3(h), there exists a positive number, which we take as δ ; , less than δ ; _ 1 and such

that if Λ € ^Γη.] g then hi_ β Ω _(e). Put g = qi h._ q. and take for Ψ.(h) a homeomorphism

identically equal to h._^ on MXh^^qJ and equal to q.li¥{g)qT1h1 = q£Ψ(&)g qt

 X on qj^- It is

clear that the two definitions agree on FrqJ1!, by condition 3(C), and so we obtain an isotopy. Let

us verify that Ψ.(Λ) satisfies all the conditions 1— 6(Ψ). Condition 1 (Ψ) follows from 1 (h) and 1 (C).
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Condition 2 (Ψ) follows from the fact that, according to the definition of ^ (h) and property 2 (C),

we have (Ψ U)). = h._ , and it remains only to recall that by definition A ; - 1 is (Ψ(._1(Α))1 for i > 1.

Condition 3 (Ψ) follows from the fact that, by 3(C) and the definition of Ψ;(Α), we have Ψ.(Α) =

λ outside g./" and so outside Q.. Condition 4(Ψ): from 4(C) it follows that (Ψ Ah)) χ = e on

qjn

lv, and so on qj" + , since y. < % by (22). Further, by 5 (Q and the definition we have

(Ψ.(Α))1 = e on q.(D\O), and so, by (24), on U ' T ^ ^ /1] +γ .. Thus 4(Ψ) is satisfied. Moreover, by

(23), {^.(h))l = e on D\0., SO that 5 (Ψ) is also satisfied. Condition 6(Ψ) follows from 6(C), 3(h),

and the definition of Ψ (λ).

2.11. We pass to the proof of Proposition (C). In the remaining part of this section we reduce

this proposition to an assertion (see 2.15) which, as we have said, is the local case of our theorem

and will be proved in §4.

We introduce some notation. If Γ is a triangulation of the space /?" then T" denotes the sec-

ond barycentric subdivision. By St_/Y we denote the union of the closed simplexes of Τ which

either are incident on simplexes of X, if X is a subcomplex, or intersect X, if X is a subset of Rn.

2.12. We take a triangulation Τ of the space Rn so fine that

Str-Str (D\0) Π (Fr Df] /?) = Λ, (25)

Str-Str/"·/. d Int /?,5. (26)

For each open simplex σ £ Τ we take the cell ζ = ζ(σ) = (St^ ,Aa)\{St T ,Ada)). We note that

ζ f] ζ Φ- Λ if and only if the corresponding simplexes are incident. We enumerate the simplexes of

Stj,/1^ , first enumerating those belonging to S t τ { ϋ \ 0 ) : σ , σ2, · · · , σd, and then the remaining ones

in order of increasing dimensions: °d+,, σ ^ + 2 ' ' ' ' > a

s - ^ e n o t e t n a t ^ z ι Π (D\0) Φ A then i < d.

Choose numbers η . > 0, d + 1 < i < s, so small that

0 ^ (Zt) C/?.5 (see (26)); (27)

^ ( ^ Π Ο - , Μ ^ , if ζιΓ\Ζΐ'=Α; (28)

if 0~. (ζ,) Π (D\0) φ A.then i < d. (29)

We construct a sequence of numbers δ . > 0 such that

δ^β,-,-Ο/,, (30)

and for each homeomorphic δ £-shift g : /£ —> /!" which is the identity on D, we construct an iso-

topy Ψ/g) such that the first d of these isotopies are the identity and the following conditions are

satisfied:

1 (Ψ). Ψ;(#) depends continuously on g;

2 (Ψ). (Ψ ;(?))ο = ( Ψ . . ^ , if £>*/+ 1, (Ψ£(β))0 = e if i = d + 1;

3 (Ψ). Ψ/g) = ( Ψ . _ 1 φ ) 1 for i > rf + 1 on
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W . ( g ) , e f o r i = d+l ong(

4(Ψ). (9.0)),= g-1 o n g V ;

5 (Ψ). W£(g) = (Ψ._ 1(?)) 1 on g ( S t r , , ^ . ) ;

6 (Ψ). ($.(?))! = e, if g = e on /^.

2.13· Put δ < min(%, δ ). Then for each homeomorphic δ-shift g : ln —> Rn, all the isotopies

) are defined, and by 2(Ψ) their composition is defined, and we take it for W(g ). Moreover

= e, so that 2(C) is satisfied. Conditions 1 (C) and 6(C) obviously follow from 1 (Ψ) and

6(Ψ). Condition 3 (C) follows from the fact that, according to 3(Ψ), the 0^ (z.) are supports of the

isotopies Ψ/g), and, by (27), 0~.(z.) C /J ? , and so ΨΧ^) Ξ e on Λ"\/" ,. But g/^ 3 /J1

 f since

δ < Μ, and hence Ψ . (g ) = e on Rn\g"In

r

Let us verify 4(C). First, by 4(Ψ), (W;(g))1 = g ~ ! on g z . . ' If i ' > i, either 0^ , (z.) does not

intersect z ; or σ ; lies in θσ. , . In both cases Ψ£ / (g ) Ξ (ψ ; , _j(g))j on z ; (by 3 (Ψ) in the first case,

and by 5 (Ψ) in the second). By induction, Ψ. , (g) = g"1 on g^z., and so WgO^ = (Ψ ί ( | ' ) ) 1 = g""1

on all the ζ .. But evidently U£

s

=1z£ D /" .

It remains to verify 5 (C). As we have seen, Ψ ^ ) = e on /?n\Uf_j 0~ (z ). If 0 ^ (z.) inter-

sects D\0 then i < d by (29), and all the initial isotopies Ψ. (g) for I < i < d ate the identity.

2.14. We construct the δ . and Ψ (g) successively. Arguing by induction, we assume that

δ £ - 1 and W£-1(g) have already been constructed.

Thus for each homeomorphic δ ..-shift g : /" —> Rn we have a homeomorphism h ._ : /?" —•• /?"

equal to e for ί = 1 and equal to (W£_J(g))1 for ί > 1, with the properties

1 (h). ft _ depends continuously on g;

2 (h). "h.^ = g - 1 on gStT,,5a.;

3 (h). "h.^ = e, if g = e on /^.

If i = 1 then these properties are obvious. If i < d + 1 they are also obvious, since each of the

first d isotopies is the identity. Let i > d + 1. Properties 1 (h ) and 3 (h ) follow immediately from

1 (Ψ) and 6(Ψ). Property 2 (h) follows, as we saw above, from 4(Ψ) and 5 (Ψ). We must now con-

struct δ . and Ψ. for i > d. Consider the homeomorphism e ·. 0^- (z.) —> Rn equal to h ,e on
t ι r °[-l TJI ι Ί [-1°

0-%·· (ζ.). It obviously has the properties

1 (g). gi_i depends continuously on g";

2 (g). gi-ι = e on Str-Ar,;

3 (g). g,., =e, if g = e on /J.

We shall construct a number δ . > 0, and an isotopy Ψ.(&) for each homeomorphic δ -shift g :

~ (z£) —> /?" with properties 1—3(g), such that

1 ( ψ ) . Ψ; (g) depends continuously on g;

2 (Ψ).
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3 (Ψ). f, (£) = β on i ( # \ O ~ (z,));

4 ( |). ($i(g))i=l·1 on gZl;

5 (Ψ). f , ( | ) = e on StT-dai,

6 (ψ)·(ψ, ( £ ) ) = * , if I = e o n O ~ ( 4

By conditions l ( g ) and 3 ( g ) there ex i s t s a number, which we take as δ ., l e s s than δ ; _ 1 and

such that if g is a homeomorphic δ -shift of /" in Rn then the mapping g._, = A ._ g (which is

obviously defined, since δ . < δ . ) is a homeomorphic δ -shift on 0^ ( z ) . Then the isotopy

W.(g ;_ ) is defined, and we take as the required isotopy ΨΧβ ) the isotopy identically equal to
/\*r r " ^ Λ ^w O_i *"X̂  _

A = (Ψ (g )) o u t s i d e g O · ^ ( z . ) a n d e q u a l t o Ψ (g ._ ,) A ._ o n gO^ ( z ) .
i l i l l I i ι ι ι ι ι ι ι '/ _j t jv,

Properties 1—6(Ψ) follow immediately from the definition, properties 1—6(Ψ), and the properties
~ %

of the homeomorphism h ,_ and g . . .
2.15. Now we carry out the last step in the reduction of proposition (B) to the Local Theorem.

Let ρ = dima£ . Represent /?" as Rp χ R" p , where Rp is the coordinate hyperplane spanned

by the first ρ axes and Rn p is that spanned by the last η - p. Let lp and /" p be the cubes de-

fined for Rp and fi""" just as Ρ is for Rn.

In an obvious way a homeomorphic mapping a: Rn —> 0-^ (z .) can be constructed such that
'I i l

1 (q). qla = zt;

2 (q). q(Rn\(l? X Rrp))ciStrdat;

3 (q). q{r χ ^"-Oczo^ (Z<)\str.art.

With the help of the homeomorphism q the construction of Ψ;(g ) reduces to the following proposition.

2.16. Local Theorem. There is a number δ > 0 such that for each homeomorphic 8-shift g:

/" _-, ft" w/uc/i is the identity on / " \ ( / p χ 7"~p) ί/iere exists an isotopy H{q) such that

1 (L). H(g) depends continuously on g\

2(L). (H(g))o = e;
3 (L). H ( g ) s e on « n \g(/ p Χ 7ΓΡ);

4 (L). (H(g))1 = r 1 o»^?;
5 (L). (H(f))1=e, i/" g = e o^ /2

rt.

2.17. Let us show how to construct δ . and ¥.(g) , using this result. Since q is uniformly con-
1 l Pa

tinuous on /", there exists a number, which we take as δ ., such that if the diameter of a set in qln

is less than δ . then that of its preimage in 7™ is less than δ. Suppose also that δ . <

piFiO^ (z.), qln

2). Then for a δ .-shift g .: 1"2 —» Rn we have

£<(?/") (Ζθ~.(ζ,)· (3D

Put g = q lgq· By (31) this homeomorphism is defined throughout /" and by the choice of ο . it is a

δ-shift of /" in Rn. By the Local Theorem we find H(g), and we take as Wig) the isotopy equal to
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Ε outside fql" = qgl" and to qU(g)q~1 on fql" Then 2 (Ψ) and 6(Ψ) follow from 1 (L), 2(L) and
^ % ^

5(L); 3(Ψ) from 3(L), since g(q-/") C 0 ^ ; and 4 (Ψ) from 4(L) and the fact that, by 1 (q), 9 / π = ζ .
!%! ' i —

F i n a l l y , 5 ( Ψ ) f o l l o w s f r o m 3 ( L ) , s i n c e q ~ H S t T „ d a . ) f}0^ = R n \ l p χ Ιπ

2~
ρ, a n d b y 3 ( L ) , H ^ e o n

Rn\gUp x~Rn~p), but

^ / p X

by 3(q), 2(g), and 2 (q).

§3. The idea of the proof of the Local Theorem and the lemma on correction of homeomorphisms

3.1. We first introduce some notation which will be used right up to the end of the proof. We

define

Rt (dly d2) = Rtdl Π Rid,; Rid = Ri(d-e,d + ε);

h (d; r) = Ru f] /?; It (d; r) = Rt,d Π /?; Π, (dL, d2; r) = /?, (dlt d2) f] Ir

n.

3.2. We now make some preliminary remarks which will, we hope, help the reader to understand

the main idea and the plan of the proof.

First suppose that in Rn we are given three (n - l)-dimensional hyperplanes orthogonal to some

coordinate axis: R . , R. , R. , α, < αη < a,, and let a homeomorphism h: Rn —• R" be given,
[,flj i ,O2 [,«3 1 2 3 r

such that for some given number e > 0 we have hR . C Re for all values of /.

Let c = (a + a2)/2, where 2e < c - a^. Consider the problem of constructing an isotopy ω of

Rn satisfying the following conditions:

!) «0=e;

2) a>~e on Rn\Ri(a1, a2);
3 ) ω ι = ^ on Rn\R{(ai, a2);
4) ω1A/?/,cc/?f.„

the latter condition being satisfied in some given finite part of the space. We shall henceforth omit

stipulations of the type "in a sufficiently large finite part of the space", since they are not essential

for us and since the reader can easily establish them himself.

We construct ω as a product of isotopies, of the form

ω = σ ρ ,

where τ, ρ, and σ ate constructed as follows:

Construction of τ. We choose a hyperplane R. b such that hR. b C R* , where a2 - e < b <

a and we let 7 be an isotopy that is fixed outside R (a , a ), takes R . into R . , , and takes

every line parallel to the axis ox . . Then τ = Κτ h 1.

Construction of σ. Choose a hyperplane R. , such that hR . , C Re , where b^ < a,, and let
t,&2 ί , » 2 ',113 2 3

σ be an isotopy which is fixed outside ^ ; ( έ χ , a ) , takes /?; Q into R. b , and takes every line
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parallel to o%i into itself. Then σ = {τΚ)σ{τΚ) ι .

Construction of p . Let ρ be an isotopy which takes each line parallel to ox. into itself, is the

\

/

l-

α, ε αζ α3 a, _
The homeomorphism h The homeomorphism (τ) h

Figure 1

identity outside R.{c - e, a. — (), and takes R . _ into R . , .

One verifies immediately that if ω = σ ~ιρστ then ω p o s s e s s e s the required properties.

f
\

)
The homeomorphism (στ) Λ The homeomorphism \ρστ)^

Figure 2

Besides R. and fi. , let hyperplanes R., a , , · ·· , R ., Q ;, α'χ < a'2 < · · · < a'k , where
ι ,α; i ,c , j , j .

i ' 5̂  i, now be given. Suppose that for all ;' the e-slabs R\i a> are pairwise disjoint and that

hR., , C Re, , .·»/ ι · α /
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How does our construction alter the situation in this second direction?

It is clear that the isotopies τ and σ take the image of each hyperplane R ., Q, onto itself, and

therefore these isotopies do not disturb the stated conditions; that is, {στ)^R., ^ C Re., a , . In just

Figure 3

the same way, ρ maps each strip Re, , onto itself, and so ρ does not disturb this condition either.
' i

However, ρ displaces the image hR ., , from its position in Rn, and therefore when we apply σ
,a.

we are no longer justified in asserting that (σ ρστ) hR ., a , lies in R. , α ι . But since
' ;' ' i

{par) hR. , , still lies in Re. , ' for all /, the homeomorphism (cr'1) can take the points of this

curved surface only into points that are taken by (σ) into the strip R(., , . By the condition

hR., a , C Re., a , ; satisfied for all /, we obviously have that hR . /(o.'.j, a ' + 1 ) 3 R(., a , for / 7 1 and
,a. ,a . , .

j ^ k, and since σ takes each hypersurface of the form hR . , , onto itself we also have that

{a)1hR . ,{a!_1,a'.+1)DRe.,a,. Moreover , o b v i o u s l y {σ)^hRt, (α .'_ , a . ' + 1 ) C R. Λα'. _ - e, a . ' + + e ) .

On the other hand it is clear that (σ ρστ) = e on hR . , and s o o n S. , , and at the same

time (σ 1)1 = (σ)χ = e on {r)lhRi fc , and so in any case on /?; _f. It follows that if for some j the image

of R.i , falls completely outside R€, , under the homeomorphism (σ ιρστ) h, then this happens,

first, in the strip Re. a , and, second, for j Φ 1 or j'4 k in the slab ft£ Λα'. - e, a.' + e). Thus

we have the situation shown in Figure 4-
It is clear that if an additional hyperplane R . , between R . and R . is given, with R€. ,

' r r l,C i . f l j !,C β ' l,C

not intersecting R . or R . , then the whole argument can be repeated for R . , , and a new isotopy

ω constructed which takes the image of R. , into Re , and which is the identity outside

hR .(a., a ), (ω ) 1 being the identity outside hR (a, c), and the image of each hyperplane R., ,
remaining within the s lab R ., (α. _ — e, a. + + e) . In fact, for any finite number of hyperplanes

R . , R . , · · · , R . between R . and R . , a, < c . < · · · < £ , < a., we can construct an iso-
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topy ω which takes hR.^ into a narrow zone around /?.> c and simultaneously a l ters the situation

in the orthogonal direction in the indicated manner. The thickness of the zones for R. and
η ^ · a 1

i,a2

 a r e n o o b s t a c l e , because they can be shrunk as thin as required beforehand.
We now return to the situation of our theorem. We are given a homeomorphic δ-shift of /" in Rn.

Figure 4

We wish to construct an isotopy H(g) which restores the image of /" to its place and is the identity
outside /".

For this purpose we consider the lattice formed by the (n - l)-dimensional cubes of the form

Lid; r), where i runs through the numbers from 1 to n, and d through some finite number of values

depending on i and /, from - r. to r., and where r.= l+ 1/2'. Moreover we can construct H(g) as a

limit of isotopies, arranging at the ;th step that the image of each cube of the above form lies in the

e;.-zone around this cube for some sufficiently small e.. The induction is started by the choice of δ .

It is clear that if g is a δ-shift then the condition is satisfied for the given lattice if e is chosen

sufficiently small. As for the passage from / to / + 1, we apply here the method described above, with

the appropriate changes in connection with boundary conditions: after the /th step we require that the

complement of the image of /" no longer moves.

At each step we construct the composition of the η isotopies associated with the respective η

axes. As is seen from the above construction, when we obtain a refinement of the lattice in one direc-

tion we necessarily lose two-thirds of the "correct" (n - l)-cubes in each of the remaining directions

(in order to be able to separate the images of the remaining cubes by hyperplanes and then to shrink

them again to narrow bands). Therefore when we pass to the ith direction we have to multiply the

number of "correct" cubes first by 2 and then by 3"*"1, in order to compensate for the losses incur-

red in this direction at the next η - 1 steps, when we deal with the other directions. In actual fact

there are also additional complications connected with the boundary conditions, but we need not go

into these here.

3-3. We define some auxiliary isotopies; in the last analysis our construction will reduce to
combinations of these.
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By £.(d1, d , d,, d^; r , r ) , where d < d. < d , i = 2, 3, we denote the isotopy which is the

identity outside Ti.(d , d · r ), which on each segment parallel to ox. with endpoints on /.(d · r )
Ι ί Ζ Ζ I 1 1 1

and I (d ; r ) moves its points of intersection with I.{d ; r ) uniformly on t to the point of inter-

section with / .(d ; r ), which is linear on the complementary intervals of this segment, and which is

linear on each segment of the ray extending from the center of the cube / .{d · r ) between

n.Wj, dA,rx) and UU^ d^rj.

It is clear that the isotopy ζ(ά , d^, d , d^; r , r ) firstly takes I(d2; r ) into 1\(d • r^, and

secondly takes each hyperplane parallel to ox. into itself. We call an isotopy constructed in the

above way an isotopy of type ζ.

Denote, also, the product ξ.(ά - ty d — eχ, d - e2, d; r^, Γ^ξ^ά, d + Cy d + e2, d + Cy r^, τ^) by

ν id; e,, £-, f ; r , r ). It is clear that the isotopy ν. maps the "e. - s lab" Hid - e,, d + e · r ) onto

the "e -slab" Π.(<ί - f,, d + e ; τ ) and is equal to e on Rn\H{d - ey d + e ; r ) .

3.4. We shall now prove a lemma in which the preliminary considerations of 3.2 are made pre-

cise, and which comprises the geometric kernel of the whole proof.

Lemma on the correction of homeomorphisms. Let the axis ox., 1 < i < n, be fixed, and sup-

pose given

a) three numbers τ , 7, τ such that 1 < r <T < r < 2;

b) for each i ' / i, 1 < i ' < η, κ{ , numbers d(, k, 1 < k < κ{ ,, such that d^ = - r , d., =-T,

d i ' . 5 = - r i < d i \ 4 < - - - < d i - , K i ' - 3 < r f i ' . K i ' - 2 - T V d i ' , K i l - x = T a n d d i ' , K i · = r 0 '

c) numbers d , d , d , d,, together with λ numbers c,, 1 < I < λ, such that — r < d < d <

ci<c2<...<cx<d2<di<r0.

Let e > 0 be such that for each i' Φ i the slabs Re ι , are pairwise disjoint, and that the

same is true for the set of slabs R\ c , 1 < I < λ, and for the R\ d , rn = 0, 1, 2, 3-

Then, for each homeomorphic mapping g: I" —> Rn such that

where 1 < i < η and d runs for i ^ i through the points d. , , and for i = ί through dQ, d , d , d,,

there exists an isotopy X{g) of Rn such that (X)o = e and the following conditions are satisfied.

1 (X). X depends continuously on g;

2 (X) (1). (X),g/.(c.; r ) C/'Kc,; 7 + e), 1< I < λ;
1 t ί Ι ι ί

2 ( X ) ( 2 ) . ( X ) , g V . , ( d ; r ) f ] R . ( d , , d . ) ) C U . , ( d ' - e , d " + e ; 7 + e) {) R . ( d , - e , d . + t ) , w h e r e
1 I L I I Z I i 1 Ζ

i 4 i, d runs through the points d. ι , in the interval [— r , r ], and d ', d" are the left and right

neighbors of d among these points;

3 (X) (1). X = e on /? B \gn<(di, d3; r0);

3 (X) (2). (X), =e on Ra\jgni(dlt d2; r0).

(in view of condition 3 (X) (1) it is immaterial in which topology we consider the space of isotopies

of Rn.)

3.5. Before proving the lemma, we derive some consequences from condition (*) for the homeo-



308 Α · ν · CERNAVSKH

morphism g:

g(Uiid', d"; r)n/?i(<*i. d 2 ) ) c n , ' ( d ' — β , d" + e;r + ε) f] Rtfo — ε, d% + ε), (1)

where i 7̂  i, and J , <i run through the pairs of points d.i , in the interval [— r, r], with d' <d"

and r = r on F.

Let r = F, say. We first notice that the left side of (1) lies outside the image of Π. ι id", r · τ ) f)

R .{d , d ). At the same time, by applying condition (*) to each face of this parallelepiped we see

that the segment joining an arbitrary point κ of its boundary to its image gx lies outside

Π. ,{d + t, rQ — t; r — t) f] R (d + e, d — e), and so this boundary can be taken into its image by

a deformation outside the parallelepiped. Since the second parallelepiped lies in the first, we have

g(Ur{d", r0; r0) f] Ri(d0, d3))Z3Yli> (d" + ε, r 0 — ε ; r 0 — ε ) f] Ri{do+ ε, d3 — ε).

From the above it follows that the region g(Yl.,{d , d"; 7) f) R (d , d )) lies outside

U.(d" +e,r0 + e;r0-e)f] R.(dQ + e, ^ - <).

In exactly the same way, this region lies outside ΓΓ , (- rQ + t, d' - ί ; r - f) f| Z^^^Q + (•> d^- e).

It is proved similarly that it lies outside the parallelepipeds II.«(F + e, r — e ; r - e) f]

R;((f0 + e, d - e) and IT n ( - r + e , - F - e ; r - £ ) f | β£(^0 + e, d - t), and also outside the

parallelepipeds nXc?2 + e ; r Q - e) and ΠΧίί + e, d, - e ; r — e). In all, we obtain that this

region cannot intersect the difference of parallelepipeds

11,(4, + ε, d3 - ε ; r 0— ε ) \ ( Π ; - ^ ' - ε , d" + ε; r + ε) Π R^, d2)) (2)

or, in particular, the boundary of the former. But it intersects the first parallelepiped, and so is con-

tained in it. In fact, the point g{x), where the coordinates of χ are x. = d , xi ι = d ' and χ.,, ~ r

where i ^ i and i ^ i , firstly belongs to this region and secondly belongs to

ILW0 + €, d - t; r - e), by condition (*) applied to all the coordinates of x.

From the above it follows that the region in question lies in the smaller parallelepiped of the

difference (2), as was to be proved.

We observe that in the particular case when d = d" = d we have

g(Ir(d; r)n#i(di, ds))CZ/i'(d; r + e) f} Ri(d1 — e, d2 + z), (3)

where r = r or 7, i φ. i, and d = d. , ,.

It is similarly proved that

g/i(d;r)CZ/?(d;r + e), (4)

w h e r e r = r o r F , a n d d-d o r d a n d a l s o t h a t

gilt {dit d2; r) c Ut (dx — ε, ci2 + ε; r + ε), (5)

where r = r , F, rQ.

3.6. We shall construct X as the composition of λ isotopies ω ;, 1 < I < λ, which successively

"correct" the images of the cubes lie,; r ) corresponding to the points c ; . We begin with the

point cχ; that is, X = ω^ ο · · · oca..



LOCAL CONTRACTIBILITY OF HOMEOMORPHISMS 309

For the sake of uniformity put c^ + 1 = d2 and c^ + 2 = d . Both these points are used in the

construction of ωχ, and the point d also in the construction of ω^_1· Denote by Η the set

U , / ,,., {R€, {jRe< ); then

tf Π /?.-e = Λ. (6)

3.7. We shall construct ω ; as the product of an isotopy ω[ for which (ω ; ) 0 = e, and the homeo-

morphism equal to e for I = λ and ( ω ; + 1 ) χ for I < λ.

For the isotopies ω, we require the following conditions (given in a form convenient for induc-

tion) to be satisfied:

1 (ω), ω, depends continuously on g;

2 ( ω ) ( l a ) . (al)lgl{cl,;y) C / ' C c , , ; 7 + e ) , I < I ' < λ ;

2(«a)(lb). (ω,) ι β /.(ο ζ , ; rQ) C R ^ ^ , _f \j H, I <V < λ;

2 (ω) (2a). U ^ g t / ^ U ; r ^ ^ U j , ^ ^ ( ί . ^ Γ ^ ^ η ί ^ - ί , <̂ 2 + e))U

(Π. , U ' -f, rf" + e ; r + i ) n U f , +

=

1

i + 1 ^ ( c i , ; F + f ) ) , where i', d, d' and <T are as in 2(X)(2);

2 ( ω ) ( 2 b ) . ( w p i g ( n . , W , c / " ; F ) n / ? [ . W 1 ; c i ) ) c n i , W ' - e , i " + f ; F + f ) j n

R .{d - e, cl + e), where i ' £ i, 1 < i' < n, d' < d ", and d', d" run over the points cT / h of the

interval [- T, 7 ] ;

2 ( ω ) ( 2 c ) . ( ω , ^ Ο ΐ . , Ο ί 1 , rf"; r l f l R . U j , rf2))c(n.,W - e , rf" + e ; r + f ) n

R.W. -f, J , + « ) ) t j ( R + - , U ^ ) , where i', d', and d" Site a s in (2b);

3 (ω) (1). ωι = e on Rn\(cuin)lgUi{dv c ; + 2 ; rQ);

3 (ω) (2). (ω ; ) 1 = e on « Λ ί ω , + ^ ^ Π . ί ί / ^ c ; + 1 ; rQ).

3.8. Conditions (X) follow from conditions (ω). This is clear for 1 (X) and 3(X). Condition

2(X) (1) follows from 2 (ω) (la) for I = 1, and 2 (X) (2) from 2 (ω) (2a) for I = 1, since, as one sees

immediately, both terms on the right-hand side of the latter condition lie in each term of the right-

hand side of condition 2 (X) (2).

3.9- Arguing by induction, suppose that the isotopy ωι+1 has already been constructed, and so

a homeomorphism g l+l is defined, equal to g in the case I = λ and equal to (<u/+,)jg for / < λ.

From conditions (ω) it obviously follows here that

1 (g )· S ι+ι depends continuously on g;

2 (g ). the same as 2 (ω), but with (ω{)^ replaced by g l+, and / by I + 1;

3(g) . g = g on fiAnWj, d2;r0).

These conditions are satisfied for g in the case I = λ , and therefore we can start our induction.

In fact, l(g") and 3(g~) are satisfied trivially; 2 (g") (la) and (lb) follow from the fact that by

hypothesis, according to (*), g/.W2; rQ) C I€Ad2; rQ + e); 2(g) (2a) follows from (3); and 2 (g") (2b)

and (2c) both follow from (4).

Henceforth we drop the index I in the notation for the isotopies and the index / + 1 in the

notation for the homeomorphism g , + .

Moreover, we carry out the argument for the case I < λ. The case / = λ requires only minor

alterations.
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3.10. We derive some corollaries from condition 2(g)·

gUt{dlf d2; r ^ c n i i d ! — ε, d2 + ε; rx + ε) U /?£Γ,+ί_ε. (7)

It is sufficient to prove that the boundary of the left-hand region is contained in the right-hand

one. For the images of the faces I f^d ; r ) and I (d2; r ) this follows from (4), since g = g by

3 (g ). If i' £ i then

£(/ί'(±Ύ, rJORtfa, d2))d(Ii'(±r1; r1 + e)r\Ri(d1—B,di+t))\jRti+1-*

by 2{%) ( 2 a ) , s i n c e I*(c . , ; 7 + e) C R*c _£ for V > I + 2. S i n c e o b v i o u s l y le.,{± Γ χ; Γχ + e) C

^" + , w e o b t a i n t h e r e q u i r e d c o n c l u s i o n .

gUi {d0, d2; r) ID Πι (d1? c / + a — ε; ^ + ε). (8)

We observe that the boundary of the left-hand region does not intersect the interior of the right-

hand one. For the faces ^WQ; 7) and /{d2; 7) this follows from condition (*) for g, since g = g

on them, by 3 (g ). For the remaining faces it follows from 2 (g ) (2c) (for d = d = τ) and

(7)·

On the other hand, the two regions intersect; for example, they both contain gl.(cl+^; r ) . This

is clear for the left-hand side, and for the right-hand side it follows from 2 (g )(la) and (7).

From the above two assertions it follows that the left-hand region contains the right-hand one;

that is, (8) is proved.

£ΠιΚ, c/+1; 7)(ΖΖΏι(ά1—ε, c / + 1 + ε; r + ε). (9)

This condition comes directly from 2 (g ) (2b), upon putting d ' = - F, d" =7.

gUi(dlt c , + 3 ; r 0 )ZDU i (d l + ε, c ; + 2 — ε; rD — ε). (10)

The proof is similar to that of (8). In fact, that the boundary of the left-hand region does not

intersect the interior of the right-hand one follows from (*) for the face I {d ; r ), from 2 (g ) ( l b ) and

(6) for the face / ^ c / + 2 ; rQ) and, finally, from (*) and (3) for the faces /. , ( ± rQ; rQ) f] Ridv c ; + 2 ) . On

the other hand, both regions contain gl.(c.+ ; r) (see 2 ( g ) ( l a ) .

g(Ur(d', d";r)r\Ri{dL, c i+1))3//e'(d; r, + ε) Π Rifa + ε, c ; + 2 — β), (11)

where i / i, d is one of the points d. , in the interval [- r , r ], and d , d are the left and
ι , fc 1 1

right neighbors among the points d. ,
I t Κ

Both sides of this inclusion contain g{I, i(d; τ ) f| R .(d , c )): the left-hand side obviously,

and the right by 2 (g ) (2a) and (2b). Therefore it is again sufficient to prove that the boundary of the

left-hand region does not intersect the interior of the right-hand one.

For the faces orthogonal to ox ; this follows from (*), 3(g), and 2(g ) (lb).

For the faces of the form / ;«(+ 7, 7) f| /?£ ,{d', d") f| Rid^, cl+2), where i' ^ i and i" Φ> i, we

have from 2 (g") (2c) that

g.(h" (± r, ~r) Π Ri(dlt da))CZ(/f-(± r, 7 + ε ^ Κ ^ - β , d2+s))[JRtcl+i-e{JH,

and the right-hand side of this inclusion does not intersect the interior of the region standing on the
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right-hand side of (11).

Finally, we see that it follows from condition 2 (g ) (2c) that the image of the face I. , (d ' ; F) f]

R(d{; cl+2) lies in

/?'(<*'; ~r + ε) Π
and again

/?' (d'; r + ε) Π /?- (4 rx + ε) = Λ, # ^ + 2 - ε Π Int #<^

Η Π /",+ε = Λ (see (6)).

3-11. We pass to the construction of ω . We observe that by an arbitrarily small isotopy, inde-

pendent of g, we can arrange for the weak inclusion in 2 (g ) to be replaced by strong; that is, by in-

clusion in the interior. We shall assume this to have been done already.

We shall construct ω as a product σ ιρστ, where τ, σ, and ρ are three isotopies, of which τ

and σ are conjugate to isotopies of type ξ, and ρ itself has type ξ (see 3-4).

3-12. Construction of τ. Let a1 > cl be the least number with the property that

glifc, ro)(ZRU-*\jH. (12)
ihis minimum exists, with

O i O i + i , (13)

by 2(g )(lb).

Let us prove that ο = a i ( g ) depends continuously on g . To do this we first show that if a num-

ber a has property (12) then for any a' such that a < a' < c , +

git (a', r0) Π Π,Κ + e,ci — ε; r0 — ε) = Λ. (14)

In fact, the image of the boundary of II£(c?1, a; rQ) obviously does not intersect

IntllXrfj + e, cl - e; rQ - e) ( by (*), (12), and (6)), while this boundary may be deformed into its

image outside the parallelepiped ΓΓίί^ + c, c l - (; rQ - f). Indeed, the points of all the faces of

IIWj, o; rQ), other than /Χα; r ) , go into their images along the segments joining them, and the

image of the latter face must first be deformed on Η onto R. , and then also deformed along

segments.

From this we obtain that

gnt(dlt a; ro)Z) 11/(^ + 8, Q —ε; r0 —ε). (15)

On the other hand, it is clear that for α < ο we have

glt{a'\ r0) Π Μ ill·· Κ, a; r0) = Λ.

From this and (15) we obtain (14).

If now e is a small number, then by the above it follows from the choice of α that

git (a + ε; r0) f] Π/ (d, + ε, ci — ε; r0 — ε) = A,
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while

gl, (αχ — ε; r0) Π Int Π,- (di -Γ ε; c, — ε; r0 — ε) φ λ,

since otherwise a — e would have property (12), and then α would not be the least number with

this property.

Both the conditions are preserved if g is replaced by a sufficiently close homeomorphism. This

proves the continuity of a^g).

Now let a = a (g ) be the greatest number such that for all a , a < a < a , we have

giUtid,, d2; ro)\I'^) dint Η. (16)

This time we shall not prove that a depends continuously on g, but we shall show that

a2(g ) is lower semicontinuous as well as, by the remark at the beginning of 3-11, strictly positive.

To prove the lower semicontinuity we observe that if 0 < ο < aAg ) then condition (16) is also

satisfied for all homeomorphisms g : 1^ —> Rn sufficiently close to g , and therefore a2(g ' ) > a' ,

whence follows the semicontinuity of a .

By Baire's well-known theorem on the separation of semicontinuous functions by continuous ones

(see [4]), we can find a continuous strictly positive function a Sg) such that

0)\;_~)c://. (17)

Now let F = ξ.{άν cv av c ; + 1 ; r2 ~ 'a 2 , rQ).

Since ά,χ < c ; < a 1 < c ; + 1 , 7 is correctly defined. We note that

xltfa; r0) C ItK; r0) (J (Π*(dv d2; ro)\/ r" c_~). (18)

We put

We remark immediately that from the construction of τ and from (18) it follows that

Mii/ifa; Oci/iK; r0) υ ί C

and by the choice of ο (see (12)) and by (17),

Moreover, obviously

(i)igli(CD r0) d gUi{άλ, a,; r0). (21)

3.13. We note the following properties of τ:

1 (τ), τ depends continuously on g ;

2 (r). the same as 2(g), but with g replaced by (τ) g and with the following addition to 1 (a):

git fa; r) d Π; fa — ε, cl+1 + ε; 7 + ε); (22)

3 (r). r^e on Rn\gH.(dv cl+1; r Q ) .

Property 1 (r) follows from the fact that both the parameters α and a defining the isotopy ¥

depend continuously on g , by their construction; and 3(0 is also obvious from the construction. To
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prove 2(7") and for later use we note that since 7 is an isotopy of type ζ, it takes every hyperplane

parallel to ox. into itself, and so τ takes the images of such hyperplanes under g into themselves.

From these remarks and from 3(r) it follows that

(t)1i
:/ i'(d;ro)=i/t.(d;ro), i'ψ i,

(*i)£Md; r)= glr{d;r), V φι, (24)

(τ)ι? = g on lr(d; r0) Π Rt,cl+1, i' Φ «· (25)

In turn it follows from these properties that (r)j takes the left sides of the inclusions in conditions

2(g) (2) into themselves. The conditions 2 (g) (1) are not disturbed, since (τ) l = e on their left

sides, by 3 W.

We note further that from (24) and (25) it follows that

Wigtlddi, c!+1; r) = gili(dlt c/ + 1; r).

Finally we prove the addition (22) to condition (la). From 3 (r) it follows that

(τ)ι£Λ (c/; r) c gUt (d,, ci+l; 7). (27)

From (9) it now follows that

Wiglticr, 7) C Π/Κ — ε, ci+l + ε; 7 + ε). (28)

From (21) and (28) it follows that

(xWdcr, r)c: (Rtcis U Η) Π Π (·(^-ε, c«+1 -f- ε; r + ε),

which in view of (6) is Π £ (ο ; - e , c ; + 1 + e ; F + e), and thus (22) is proved.

We note for future use one further property of r, which follows from the fact that 7 is constructed

as an isotopy of ζ, and from 3 (r) (r = r , 7, or r ):

MiniK, 4; r) = £π,Κ, 4; r). (29)
3.14. Construction of σ. Let fcj = i>j(g) be the least number such that

&1>max(c/, a j , (30)

(τ)ι?Λ(&ι; r0) c /?.><+i-e U ̂ · (3D

Such a minimum exists, with b ̂  < c[+1, by 3 (τ) and the assumption of strict inclusion in 3.12.

Like a , b depends continuously on g. We note some properties of b :

(tWiicf, rjtzgnddi, b{,r0) (32)

(from (30) and (21));

(*)iS//' (d;'r) Π /?/(di,&i))c£(/i' (d; r) Π Λιί^,Ο+ι)) (33)

(from (32), (24), and (26));
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τ&m(dv 6 i ; 7)CgΠ,(d l t ct+1,7); (34)

(τ)ι£Ίΐ* (6lf c,+2; r0) c /&/ + 1-ε \JH. (35)

Indeed, the boundary of the left-hand region lies in the right-hand one.

Μ Ι Ϊ Π Ϊ (blt c,+1; r) c If (ci+l; 7 + ε). (36)

Since b1>cl> άγ, it follows from (26) and (9) that

{x)igi\i(bu ci+1 ; r) c IL{άλ — ε; c / + 1 + ε;r + ε).

On the other hand, from (34) we obtain that

Since // f) / = Λ (see (6)), we obtain (35).

Now let b = b Ag) be the least number such that

(τΰ//(δ2; r0) C ^^,+ 2-ε U ̂ · (37)

Again the minimum exists, with

+i (38)

and with b depending continuously on g .

We observe that

(A§m (bt, cl+2; r0) c Rtcl+2-s U H, (39)

which proves (34).

Now let σ _ £(b , c[+ , b2, c[+2; r, r + e). Since fej < c ; + J < b2 < cl+2, σ is correctly defined.

Put

Then, by the construction,

(ax^glt (cl+l; r0) = (x\gh(b,\ r0). (40)

3-15. We note these properties of σ:

1 (σ), σ depends continuously on g ;

2 (σ) (la). (oT)£l.(cl+lir0)cR + ci+2^UH;

2 (σ) ( lb) . (στ)^ = (r)jg on / . ( C / ; r Q ) ;

2 (σ) (2). The same as 2(g) (2), with "g replaced by (στ)^, and a l so c / + 1 by 6j in (2b).

3 (σ), σ ^ ε on Rn\b)£Uib^ c / + 2 ; rQ + e).

Properties ΐ(σ), 2{σ) (2), and 3(σ) can be verified in just the same way as the analogous proper-

ties for τ. Property 2 (σ) (lb) follows from 3 (σ) and (30). Finally, 2 (σ) (la) follows from (40) and (37).

We give some further properties of σ that are needed later:

(σ)ί ( T W m (dlt d3, r) = gUt (du d3, r) -
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for all t € [θ, l] and for r = r j ; 7, rQ. This follows from (29), 3(σ), and the fact that σ is an isotopy

of type ξ.

( o t ) t i Πί (Ci+i, ci+ϊ, rx) =-• (τ)! i Π; (fe* c ; + 2 ; r). (42)

This follows from the construction.

From 3 (σ) and (41) for r = rQ it follows that

S{a) Π ίΠ, ·^ ! , d3; r0) = M i i n ^ , c/+2; ro)ci tf U #U+i-e

(see (35)), where S(a) is the support of σ.

Hence it obviously follows that

iaMRtt-tUffl-Rlct-ElJH, (43)

(a)t - e on (τ)! gn,- (d', d", r) Π ΛίΚ, bj, t' =f= t, (44)

( σ ^ - e on /f(c / ; r- r e), (45)

(σ)! = e on (τ)! gllj (dlf bx; r). (46)

Finally, since τ and σ also take the image under g of each hyperplane parallel to ox. into

itself, by 3 (σ) and 3 W we obtain that

(o)~g(tlr(d', d"; ~r) Π /?7.C/+.) -- (στ)^(ΙΙ£. (d', d"; ή Π Ri,c!+2)

(d',d";T)f]Rul+i), (47)

where i' ^ i, and c?', d" £\d , A, d' < d".

3.16. Construction of p. Put

Ρ = E< if ι — ε, c/+ 1 + ε, Ci -f- ε, c, + 2 — ε; r + ε, r0 — ε).

We observe that

(ρ), Π,(ci — ε, ci+i + e; r + ε) = /? (C/; ? + ε ) . (48)

3.17. We note these properties of p:

1 (ρ), ρ is independent of g ;

2 (p) ( l a ) . (par)1'gli(cl;T)cl£.(cl; F + e ) ;

2 (p) ( lb) . ( p a r ) ^ / . ( c , ; rQ) C Λ+ U #5

2 ( p ) ( 2 a ) . ( ρ σ Γ ί ^ Ι / . , ω ΐ Γ ^ Π Λ ^ , , rf,)) C ( Λ / ^ - e, rf2 + f) Π ^ ι W ; ^ + e)) U

( U ^ ^ + 2 / f ( c z , ; r + ( ) n n . , W - e , </" + e; F + f ) ) , where i', d, d', d" a r e a s in 2(g) (2a);

2 ( p ) ( 2 b ) . {paiijgfE.Ad1, d"; 7) f) R .(dv c{)) C Π . , W - e, d" + e; r + e) f| Λ / ^ - ί, ο, + ί ) ,

where </ < rf and ί are as in 2 (g ) (2b);

2 ( p ) ( 2 c ) . ( p a r ) ^ U I . , U ' , rf"; D n / i j W ^ ^ ) ) C Π . , W ' - e, d" +(;T + e){J

Riid1; cl+2 - i) U H, w h e r e d',d",andi' a r e a s in 2 (g* ) ( 2 c ) ;
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3 (ρ), ρ ΕΕ β on K " \ I I . ( ^ - f , C ; + 2 - f ; rQ _ e).

Properties 1 (ρ) and 3 (ρ) follow immediately from the fact that ρ is of type ξ. Property 2(p) (la)

follows from (22), 2 (σ) (lb), and (48), and 2(p) (lb) from (21), 2 (σ) (lb), and the fact that S(p) C

^i.cre b y 5 ^ ' w h e r e S(p) is the support of p.

Condition 2(p) (2a) follows from 2 (σ) (2a), 2 (g ) (2a), and the fact that ρ takes the right-hand

side of the latter condition into itself, since p . e o n K,cl+2-c &Y 3(p)), and since ρ takes

Γ ι {d; rl + e) into itself (being of type ξ).

Condition 2(p) (2b) is obtained as follows:

)ι g(n£- (d\ d"; r) Π Ri{dv c,))

CZ (ρστ)χ g (ΠΓ (d', d'; r) Π fl« (d u Μ

= (Pt)ii (ΠΓ (d\ d-'; r) Π «ί (di, &i)) (•see (44)>

C (P)i g (ΠΓ (d', d"; F) Π Λ* (dp c/+i)) ( s e e (34)>

e (ρ)ι (ΠΓ (d' - ε, d" + ε; F + ε) f] ^i (^ - ε, ci+l - ε)) (see 2 (g)(2b))

= nt< (d' — ε, d" + ε; r - Γ ε) Π /?{(̂ ι — ε, c, -r ε),

since ρ maps the first term into itself, and R.(dl - e, c / + 1 + e) D C + into /?.U1 - e, c^) f] It by (48) and

3(p).

Finally, by 2 (σ) (2c) and 2(g") (2c),

C (p)i (Π*' (d' — ε, d" + ε; r+ ε) (J /?j (c, + i — ε, d j (J H)>

and (p) takes each term into itself, the first because ρ is of type ξ, and the second because .S(p)

does not intersect it (see 3(p))· Thus 2(p) (2c) is also proved.

We note some further properties of p:

(?)i Π; (— rx — ε, c, + 2 — ε; rx + ε) = Πί (— rx — ε, c i + 2 — ε; rx + ε);

e; ( 5 0 )

on (t^in.^V. r0); (52)

on (στ)1§Π ί(ε/+ 1, c i + a ; r0). (53)

Property (49) follows from the fact that on the one hand R.(- r. - e, c[+2 + e) contains the sup-

port of p, and on the other hand {ρ)ι maps each hyperplane parallel to ox. into itself. Propert ies

(50) and (51) follow from the fact that the support of ρ l ies in R~cl+2-i

 a n d d o e s n o t intersect H,

since Η f] In _ = Λ (see (6)). Property (52) follows from (51) and (39), and (53) from (52) and (42).
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3.18. It remains to verify that the isotopy ω possesses all the properties (ω). Condition 1

follows immediately from the corresponding properties of τ, σ, and ρ . Of these three isotopies only

σ is not the identity on Rn\'gU.(d1, d^ rQ), but by (41) (σ)(g"[lUv d^; rQ) = gll.Wj, d^ rQ) for all

i, and so σ 1ρστ= σ ισ= e on /?n\gIlXc?1, d ; rQ). Moreover τ is the identity on

g r r ( c ; + 2 , d · rQ) by iir), a is by 3(σ) and (41), and ρ is by 3(p) and (10). Thus ω = e on

Rn\gYikdY cl+2; rQ), and 3(ω) (1) has been verified.

Further, {τ) ι = e on gH{c[+1, c ; + 2 ; rQ) by 3(r), and (p)J = e on ( a r ^ g l l . (cj+1>
 c ; + 2 ! ro^ ^y

(53). Thus (σ~ 1 ρ σ Γ ^ 1 = (σ~1στ)1 = (σ"'σ) = e on g l l £ (c ; + 1 , c ; + 2 ; rQ), and together with 3 (ω) (1)

this gives 3 (ω) (2).

Let us verify conditions 2 (ω) (1). By 3 (ω) (2), condition (la) need be proved only for / ' = Z,

since for the remaining values of / ' > I it follows from the induction hypothesis, 2(g ) (la) and

3 (ω) (2).

From 2(p) (la) and (45) we have

(σ'1 ρστ), gh (cr, r) C (σ"1)! /; {cr, r + ε) = /? (d; r + ε).

Let us prove (lb). Again we need consider only the case / = /. By 2(p) (lb) and (43) we have

iltid·, r0) c (σ )̂ι (ti. f/-E U ») = RU-* U H,
which gives 2 (ω) (lb).

We pass to the proof of property 2(ω) (2), beginning with (2c).

Let the point * € ~g (Uid ', d" ; F) f] Π Xci1, c ; + 2 ; rQ)). If {ρστ)χχ € {τ)^X\{b^ c;+2; rQ), then

in view of 3 (σ) and (41) we also have (σ 1ρστ)1% £ i^^Wib χ, c ; + 2 ; rQ), and (ω) 1 * £R . -e\J Η

by (35).

If (ρστ)^ G {r)lgU.{dl, b χ; rQ) then, again by 3 (σ), {σ)χ{{ρστ)γχ) = (ρστΙ^χ, and thus

(ω)χΛ; = (ρστ)^, so that 2(ρ) (2c) applies.

If χ £ g(II.W\ c?"; DXlI.Cdj, c ; + 2 ; rQ)) then ( ω ) ^ = χ by 3(ω), and we apply 2(g) (2c).

We now prove (2b). We have

I/'(d', d"; r) Π Rtfo, d))

C (σ"1)ι (LV {d' — &, d" + ε; r + ε) η /?, (^ — ε, c< + ε))

= IT<- (d' — ε, d" + ε; r -f ε) f) /?/ (dt — ε, c, + ε),

by 2(p) (2b) and the fact that S{a) f| j l l .d i j , d^; rQ) C (Λ π \ /^ _£) \J R*c + _ f , where S(a) is the

support of σ (see 3 (σ) and (35)), and so S(a) f] gili.d , d • r ) does not intersect

I I . , U ' - e, d" +<r; 7 + () Γ\ R Sd ι ~ f' c i + e) ( s i n c e Π ; ' W ~ f ' rf" + e' F + e ) C l l

 + C/"

and RT , f]R+ =Λ).

Finally we prove (2a). First we show that

(^ιϊΠίΚ, dt; rjagntid» d2; 7). (54)
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Indeed,

(ρστ)ι£ΠίΚ. d2; rx) - ( ρ ^ Π ^ , d2; r,)

d (p)i Πί {dl — ε, d2 -j- ε; ri + ε) [J Rt,ci+i-s (see (29), (41) and (7))

= (p)t 11,(̂ 1 — ε, c!+i — ε; rl + ε) |J (p)LRtc l + 2- s

== Π,- (dx — ε, c,+2 — ε; rx -f ε) [j Rtcl+i-s (see (49) and (50))

CZgUi(d0, d.,;~r) [j /?Lz+a-e· (see (8))

Take a point χ in gll^Wj, </2; Γχ). If (ρστ)χχ € Λ£ _e then, s ince (p)j = e on R . _f

(see 3(p)), we have {ρστ)^χ = ( σ τ ) ^ , and so ( ω ) ^ = {τ)χχ, and (29) can be applied. If {ρστ)χχ €

gΠ.(</., ί/2; F) then (par) χ € g l l^r f j , c^2; r") by 3(ω), and it follows from (41) that we a l so have

( ω ) ^ € g l l . U j , <i2; F).

It follows from (54) that ( S ) . g ( / . , W ; r . ) f ) / i . W , 5 «?,)) C g u - W , rf ; 7) = (τ).^ΐΙ.(ά , d ;T)

(see (29))· Now take a point χ € gX/., U; τ χ ) f] Rid, dj). If ( ω ) ^ € (rijg'II.Wj, 6 χ ; F), then

(σ)1((ω)][Λ:) = (ω)1% by (46), and so ( ω ) ^ = {ρστ) χχ, and 2 (ω) (2a) follows from 2 (p) (2a). If

(ω)ιΧ € W j g l H c ^ , d2; T) then (par) x € ( σ ^ ^ Π . ^ , ^ , c?2; 7) = {T)^U.(12, d2; 7) by (42), and

{p)1 = e on ( r ) x g Π £ ( 6 2 , d2; 7), by (52). Thus (par)^ = ( ( r r ) ^ , and then ( ω ) ^ = ( r ) ^ , and again

2(r) (2a) can be applied.

From what we have proved and (54) it follows that it is sufficient to consider the case when

(see (36))

(ω)! x € ( A glh (&i, c/+1; r") (Z /? (c/+1; 7 + ε). (55)

On the other hand, by 2(p) (2a)

CZ/f'(d; r t + ε) [J (Ur (d' - ε , d" + ε; 7 + ε) Π Rtcl+t-*).

Again take χ £^{1. ,(d; r ) f] R .{d , d )). Since (p) = e on R + , if (οστ),* lies in the second

term then (par)^ = (στ) χ, (ω)χχ = (τ·).*, and ΐ(τ) (2a) applies. Since 1^, (d; r + e) C

Π;«(</ ' - e, rf" + e; F + f), it is sufficient to consider the case when

(ρστ)! χ Ρ Ι]' (d; rx + ε) [~! Rlc^-ε

dg(IU'(d', d"; 7) Π /?((di, C/-H)) ( s e e 0 0)

= ( a ^ i i u r i d ' , d"; 7) Π #<Κ, c/+1)) (see (47))

CZ (σ)! (Π,- (d' —ε, d" + ε; 7 + ε) U Rt.cl+l-e U #)· ( s e e 2(g) (2 c))

In this case we have
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(ω)χ χ c Π,. (d' - ε, d" + ε; r + ε) (J fl£C/+i_E U #• (56)

Thus by (55) and (56), noting that /*(c i + 1 ; Γ + f) Π (^,+

 c + -€ U ̂  = Λ, w e obtain that in the re-

maining case

(ω)χ JC e /? (c/+i; r + ε) Π Π,- (if — ε, d" + ε; r + ε),

but this is one of the terms on the right-hand side of 2(ω) (2a), and so this property has been

verified.

The proof of the lemma is complete.

3.19. We observe in this subsection that our construction for the isotopy X enables the follow-

ing two additional assertions to be made.

4(X). If 77 = maxU, - d., d., , - d., , _ . ) , where i runs through all values from 1 ton

except i, and k runs, for each i Φ- i, through all values from 2 to κ . , , then ω is an

/(λ, re) (77 + 2e)-isotopy , where /(λ, re) is some nonnegative function of λ and re; in other words, the

diameter of the path traversed by each point of gl" under the isotopy X is less than /(λ, re) (77 + 2e).

5 (X). If for some i ' , 1 < i ' < re, we have g = e on /., (d; r ), where d is one of the points

d. 1 for i ' ^ i and one of the points d and d for ί ' = i, then (X) = e on /. ,{d; r ) for all t.

The proof of 4(X) is easily carried out by induction on I. Indeed, by hypothesis, according to

(*), we are given that the image of each parallelepiped Π = Π , . #<, H.,(d , d ; rQ), where d and

d for a given i ^ i are equal to two adjacent values of d. 1 k, and d = d and d = d, for i = i,

goes into the e-neighborhood of this parallelepiped under g. If I = λ then both σ and τ take each

point of the parallelepiped into itself. At the same time, ρ is evidently a (d — d )-isotopy. Thus

each of the isotopies τ, σ, ρ is certainly an π{η + 2i)-isotopy, while CU\ is a 4π(η + 2e)-isotopy,

and so we have verified that the induction can begin.

Thus we may assume that the image of Π under the homeomorphism g , + , = (a>,+.),g has diameter

less than fl+l(n) {η + 2e), where {. + is some positive function of re. But again the isotopies τ.

and σ which are constructed at the next step, map g ,+ Π onto itself for each i, while p, is a

(d^ - c?1)-isotopy. Therefore ω[ is certainly a 4fl+1in) {η + 2e)-isotopy, and so ω^ο · · · ο ω ; is an

f[(n) (17 + 2e)-isotopy, where ft is a positive function of re depending on /.

Then X is an /(λ, re) (η + 2e)-isotopy, where /(λ, re) is a function of λ and re, and 4(X) is proved.

The proof of 5 (X) is almost obvious. For d^ and d the assertion follows from the fact that

X = e on gl Ad; rQ) for d = άχ and d^, and for i' £ i from the fact that τ and σ take gl. ,{d; r ) into

itself, while ρ takes 1. , (d; r ) into itself.

3.20. Remark. If we consider only homeomorphisms g which take 1id ; r ) onto itself, then we

can alter the constuction of X in such a way that for all t (X)f also takes 1 id ; τ ) into itself. To

do this it is obviously sufficient so to modify the construction of ωχ alone, since the remaining

isotopies ω ;, / < λ, are the identity on /.{d ; r ).

We modify the construction of ωχ as follows: τ\ is constructed as before, O\ = e, and ρ is

££Wj> c> C\+ f» d2; F+ f, rQ - i), where c is chosen so that 1 Ac; rQ) lies between {τ)^ΐΧθχ; rQ) and

LU2; r0).
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The verification of all the properties 1—5 (ω) is obvious here.

§4. Proof of the Local Theorem

4.1. We first show that the formulation given in 2.16 can be weakened, in a way which leads to

technical simplifications in the proof of the theorem.

The first modification affects condition 3(L). We can replace it by the two weaker requirements

3(a). H{g) = e on Rl\gln

3,

3 (b). (H (g))t {dlp ΧΙΓΡ) ==- dl" Χ / Γ " for all t.

The main advantage from this change is that the reasoning effectively ceases to depend on p,

and it is necessary only to ensure that condition 3 (b) is satisfied, which is straightforward, as we

shall see.

Using 3 (a) and 3(b), we obtain an isotopy of the manifold g(/p χ ln

2

 p), and we can apply the

method of 1.16 in order to replace it by an isotopy which is the identity on the boundary of this mani-

fold.

To be precise: assume that for some δ > 0 and for each δ-shift g: /" —> Rn which is the iden-

tity on dlp χ ln

2

 p we have obtained an isotopy H(g) of the manifold g(/p χ ln

2

 p ) such that

1) H(g) depends continuously on g;

2)

3)
4) (Hte))! = g-1 on gln (in particular, (H(g)), - e on
5) (H ( g ) ) ^ , if g = e.

By induction on the dimension, we can assume that for some neighborhood of e{dlp χ 7"~p) on

the group § (dlp χ Ι'ί p ) a contraction Η ih) of this neighborhood into e is given, where by 1.16 and

1.11 we can assume that

1) if h = e on dlp χ dln

2~
p then the whole isotopy

R(h) = e on

2) if h = e on dlp χ Ιη~ρ then the whole isotopy

Η(λ) = έ? on( ) = έ? on

3) if h = e then H(h) = e.

Then for a given g: /^ —> Rn we have firstly the restriction Η (g) of the isotopy g 1H(g)g to

dlp χ ln

2~
p', and for each t an isotopy H((H (g))£). From this, as in 1.16, we obtain a "diagonal"

family of isotopies H^(g) on dlp X 7™ p , with the properties:

1) it depends continuously on g;

2) Hd

Q{g) = H^g), H%) = E;

3) (Hf(g))Q = e for all g and s;

4) H^(g) s e on dlp χ d72~
p for all s;

5) (H^(g))x = e on dlp χ Tn~p for all s;
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6) (Hf(g))j = e if g = e.

Now let G: ((<?/p χ 7"~ρ) χ [θ, l] ~ <? be the homeomorphism on the neighborhood Q =

QidF xTn

2~
p) into /p χ Tn

2~
p determined by the conditions G(x χ θ) = χ, χ € dlp x 7^"p, and G maps

U χ [0, l]) isometrically onto the segment of perpendicular from χ € dlp χ /" p to Rl p. Let (?s =

G{{dlp χ 7^"p) x s), and let ? s : ((<9tp χ Tn

2~
p) x s) ^ <9/p χ 7^"p be induced by the projection of the

direct product.

We first specify a new isotopy Η ' (g) of the manifold g{lp χ 7™ p ) as follows:

II' (g) - H(g) on g(/ p x7

It is easy to see that this does indeed define an isotopy with properties 1—6 (L). In fact, for

s = 0 we obtain E, for s = 1 we obtain Η '(g) = H(g), and for t = 1 we obtain (H (g))j = (Hig))^ and

in particular (r l ' (g)) 1 = g" 1 on g/n.

The second weakening of the formulation is given by the possibility of omitting 5 (L). To prove

this we first take for each g the homeomorphism u(g): Rn —> Rn which is the identity on /", maps

dln

2 homothetically into the boundary of the maximal /" lying in g/^, and is linear on the complemen-

tary intervals on each ray from o. Then u(g) depends continuously on g, and u{e) = e. It is clear

that the isotopy H'(g) = u (H(e)) 1u~1H{g) possesses properties 1—5 if H(g) possesses properties

1—4 of the theorem. Thus, finally, we shall prove our assertion in the following form:

Local Theorem. There exists 8 > 0 such that for each homeomorphic 8-shift g: ln —> R" there

is an isotopy ll(g^ such that

1) Η (g) depends continuously on %;

3) H(g) = e on

4) (HteJ^r 1 on g/n;
5) if g = e on dlp χ ln

2 ~p then for all t

(R(g))t(dlp'xlT") = dlp'χ?'-"

It turns out that we may take l/8 · 3 2 " for 8.

(We note that conditions 3(L)a) and 3(L)b) of the beginning of the present subsection coincide

respectively with conditions 3) and 5) of this statement.)

4.2. We pass to the proof of the local theorem, which consists of the reduction of this theorem

to the lemma on the correction of homeomorphisms proved in §3·

We construct a sequence of isotopies Φ. depending continuously on g, for which the infinite

composition will be defined (that is, ( Φ ) ο = (Φ·-ι)ι ^ΟΓ / > l) a n ^ there is a limit isotopy, which will

be taken as H(g).

More precisely, we shall in fact construct isotopies Φ (g), / > 1, for which (Φ.) = e for all j ,

and we put Φ 1 = Φ χ and Φ. = Φ Λ Φ . . ^ . That the composition is defined is seen at once. We re-

quire the following conditions (given in form convenient for the inductive construction) to be satisfied:
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1 (Φ). The isotopy Φ. depends continuously on g;

2 (Φ). (Φ ;)]£ /£U; r) C f.Hd; r + e), where 1 < i < η, τ = 1 + 1/2', e. = 1/2'+3 · 3 2 " , and d runs

through (a) all rational points in the interval [— 1 - 1/2' , 1 + 1/2' ] which are multiples of

1/2'+1 · 3 " " 1 and (b) the points dividing each of the intervals [- 1 - 1/2', - 1 - l /2 ; + 1 ] and

[l + l / 2 ' + 1 , 1 + 1/2'] into 3" - 1 equal parts, including the end points;

3(Φ). Φ.^ίΦ^)! for /> 1 on «"Χ^-Λ^ΐ+ι/ζ/-! a n d Φ;= e f o r ' = l o n ^ V ^

4 (Φ). Φ. is a δφ -isotopy, where δφ . = )7φ/2' and ηφ depends on π but not on g and /;

5 (Φ). If g = e on /.(+ 1; 2) for some i, I < i < n, then for all t we have

4.3· Let us show that if isotopies Φ. with these properties have been constructed then their

infinite composition can be completed to a limit isotopy, which can be taken as H.

From 4(Φ) it follows that the limit mapping is defined, and thus Φ. possesses a limit pseudo-

isotopy, which we henceforth denote by H(g). It must be shown that (Hig^j is a homeomorphism

and that H(g) satisfies requirements 1)—5) of the Local Theorem as formulated in 4.2.

We show that (H(g))1 is a homeomorphism. By 3(Φ), Φ 1 is the identity on Rn\gl^, and there-

fore so are all the subsequent isotopies. Therefore (H(g)), is a homeomorphism outside gl'l. Fur-

ther, condition 3) of the theorem is satisfied. Since, by 3(Φ), Φ. = (Φ. ), for / > /' on

/ ? Λ ( Φ ; ο ) ^ + 1 / 2 ; ο , we have (H(g))1 = (Φ . ^ on Rn\gl%l/2h , a n d s o ( H ( g » 1 is a homeomor-

phism on Rn\gln = U7 = 1 (R r t \g/^ + 1 / 2 ; ) .

It follows from 2(Φ), applied to the extreme values d = + ( l + l/2 ;°) for all i, 1 < i < n, that

and since

we have

If the point χ € /" , then we take a sufficiently large / and consider the minimal cube ln{x)

containing the point χ in its interior and each side of which is orthogonal to one of the axes at a

point with coordinate a multiple of 1/2' 1 .

We observe that it follows from 2(Φ) that the image of the slab Π.ίί^, d2; rQ), where 1 < i < n,

rQ = 1 + l / 2 ' + 1 , and d , d2 take the values referred to in 2(Φ), lies in

U.(d - e., d + £.; τ + e.) (compare the proof of relation (5) in 3-5). Hence if we take an arbitrary
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parallelepiped Π ̂  ^ H.(d. , di ; r ), where d. and i/. run through the numbers referred to in

2(Φ) (a), then its image lies in its (2e ^-neighborhood.

By the above, (Φ.) g takes the cube ln{x) into its (2e.)-neighborhood, while the diameter of the

cube is not greater than n/2' and none of the subsequent isotopies take its image out of the

τ?φ/2; "^-neighborhood of ( Φ . ) ^ / " ( Λ ; ) (by 4(Φ)). Hence χ = ϋπ)(Φ ) xgx, and so (H(g)) 1 χ = g~xx.

Thus, first, (li(g)) l is g ' on gln; that is, condition (4) of the theorem is satisfied, and second,

(H(g)) is a homeomorphism on gln, and, in view of (1), everywhere.

Condition 2) of the theorem is obvious, while 5) follows from 5(Φ).

It remains to verify that H(g) depends continuously on g. It must be shown that for every homeo-

morphic δ-shift of /" in Rn and for every ( > 0 there is a neighborhood 0(g) in the space of homeo-

morphic mappings of /^ in Rn, such that if g ' € fl(g) then for all χ £ Rn and t £ [θ, l]

9W(g))tx, (H(g'))tx)<B.

Since Φ. = Ε outside a compact subset of Rn, say outside Z^+gi for all / > 1, it is sufficient to show

that for every g and for every point (x, t) £ Rn — [θ, l] there is a neighborhood Ω (g) and a neighbor-

hood 0{x, t) such that if g ' € Ωχ ((g) and (x ', t') € 0 {x, t) then p((H(g ' ))£, χ ', (H(g)) t, x ') < e .

(indeed, for a given g we can then construct a finite number of neighborhoods 0 {x, i), say 0 ,

0 2, · · · , 0 t, covering /" g χ [θ, l ] , and as fl(g) we can take the intersection of the corresponding

neighborhoods il^, Ω , · · · , Ω;.)

First let the point χ £ I^+^\gIn. Then there are jQ > 1 and neighborhoods 0 '(x) and Ω^ (g)

such that O'(x) C Rn\g'ln

1+2jo for any g ' € Ω Hg). By 3 (Φ), all the isotopies Φ.(ξ') =

{Φ. (g'))1 on (Φ;. (g'WjO'U) for / > y 0 . Thus Η (g ') is determined on 0 ' (χ) χ [θ, l] by the first

/ isotopies Φ . ^ ' ) alone (that is, for some tQ, 0 < iQ < 1, (H(g))(%' = (H(g ' ) ) t χ for t > tQ, g £

Ω ' (g), and % ' € 0 ' (%)). But by 1 (Φ) all the Φ. depend continuously on g, so we can find neighbor-

hoods O"(x)cO'(x) and Ω^'(g) C Ω^ (g) such that p((H(g ' ))(x ',(H (g))£« ' ) < e for ί € [0, l ] ,

g' en"(g), «' eo"(x).
We see that as Ω (χ, t) for any t we can take O"(x)x [0, l], and as Ω^ £(g) we can take Ω_^).

If ί < 1 then Η (g) is defined in the neighborhood of the point {x, t) by one or two isotopies

Φ., and again the continuity of Η (g) follows here from ΐ(Φ).

Finally, let χ £ gln and ί = 1. First of all, by condition 4(Φ) we find a jQ such that for each

/> / and all t € [0, l] we have, independently of g,

If iQ corresponds to the homeomorphism (Φ. ) χ in Η (g) (that is, (H(g))( = (Φ. ) 1 ), then this

means that for t > i .
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for all χ ' G R" and independently of g.

Since (Φ. (g))j depends continuously on g, we can find neighborhoods 0 ' ix) and Ω'χ (g) such

that ρ((Φ (g ' ) ) , , (Φ. n (g)).x')<e/3 for x' eO' (*) and g ' e Q ' ( g ) , and then

p((H(g')),.*\ ( H ( g ) K i ' ) < | . (3)

From (2) and (3) we obtain for t' > iQ

)^<e.
Ο

We put 0 U, l) = O'U)x [0, 1] and Ω Ag) = Q,'(g).
S S X, I X

4.4. We pass to the construction of the isotopies Φ.. Arguing by induction, suppose that the con-

struction of the first / — I steps has already been made, and so we have a homeomorphic shift g :

/" —* Rn, equal to g if ; = 1 and equal to ( Φ . _ χ ) ^ if / > 1, for which the following conditions are

evidently satisfied:

1 (g). g1_1 depends continuously on g;

2 (g). g!-i h {d\ r) C lV~x {d; r -r ε,-^)- where 1 < i < n, r = 1 + - ^ ,

e._1 = l/2 ; l · 3 2 n , and d runs through the values referred to in 2(Φ), with / replaced by / - 1;

3(^). if for some i, 1 < i < n, we have g = e on l.{± 1; 2), then g._j/£(+ 1; 2) = / ; ( ± 1; 2).

We shall construct Φ. on the basis of these properties of g ._ alone. We observe that for / = 1

every homeomorphic δ-shift g, where δ = l/8 · 3 , possesses these properties.

4.5. We shall construct Φ. as the product of two isotopies: Φ. = φ. φ., where φ. in its turn

is a composition of isotopies: φ . ο · · · ο φ. , one for each axis. The purpose of the isotopy φ.

is roughly speaking to double the number of cubes I (d; r) which are correct in the sense that their

images lie in the slabs 7/" 1 {d; r + f._.) of thickness 2e _., and the purpose of ψ. is to decrease the

width of these slabs from 2e._x to 2e.. The purpose of φ. £ is to multiply the number of "correct"

cubes orthogonal to the ith axis, but, as explained earlier, not just by two but with something in re-

serve, in fact roughly by 2 · 3" , since at the same time as the number of "correct" cubes is being

increased for the t-axis, about two thirds of the cubes are being lost for the other directions.

4.6. The isotopy φ. can be constructed at once: it is equal to the product of the isotopies

ζ. i d, taken in an arbitrary order, where (see 3-3)

/ 1 1
ij.i.d ^vi[d; &j_x, ε,-, 2ε,·_1; 1 + γ- + ey_1; 1 + — . — — ε/

and d runs through the numbers referred to in 2(Φ).

4.7. Remark. The isotopies ζ. . d and ζ. £ d , have disjoint supports it d ^ d , since the dis-

tance between adjacent numbers d in condition 2(Φ) is \/l> · 3 " " 1 or l/2 ; (3" - l), which is not

less than 4e._1 = l/2y > 3 2 " .
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4.8. The following properties of the ζ. t follow directly from the definition:

1 (ζ). t,jj,d is independent of g;

3 (ζ). h.t.d = e<*Rn\r _±_ ;

4 (ζ), ζί,ί,ά is an (ε,·-!—8y)-isotopy;

5 (ζ), (ζ- t d)( maps /. /(+ 1; 2) onto itself for all t and i.

From these properties the following properties of the isotopy φ. follow easily:

1 (ψ), ψ/ is independent of g;

2 (ψ). (ΨΛ /f'"1 (d; 1 + ^- + ε/-,) C /?' (d; 1 - ^ + ε,) ;

3 (ψ). ψ / = β on /? η \Γ χ ;
1 + '̂

4 (ψ), ψ/ is an η (ε/_! — e/)-isotopy;

5(i/»). (<A )£ maps ΙΛ± 1; 2) onto itself for all ί and i.

Properties 1 {φ) and 3—5 (φ) follow at once from the corresponding properties (ζ) and the

definition of φ,. Let us prove 2 (φ) for a given pair (i, cO.

We observe that for i ' φι the isotopy ζ. .., rf takes each of / ^ " ' U ; 1 + l/2 ; + e ) and

/*;(rf; 1 + l/2 ; + f-_j) into itself, that for i' = i and rf' Φ d it is the identity on these sets, and

finally that

Hence

Further, if i φι then for each i' Φ i the isotopy ζ- .» . takes

Π,·, ( _ 1 _ £ — e / _ l f 1 + i- + ε/; 1 + ±-

i n t o t h e m s e l v e s , a n d t h e s a m e i s t r u e for ζ. ; , if </ ̂  + ( l + 1 / 2 ' ) . If c? = 1 + l / 2 ' , s a y , t h e n

ζ/,^/^4. Π,(

a n d s i m i l a r l y for c? = — 1 — l / 2 ; . H e n c e
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and then

From the inclusions (4) and (5) it follows that

(Ψ/)ι ^i'"1 (d; H- ^- + e/-i) C /! ; (d; 1 + 4- + ε^ ,

and it is clear that in fact there is equality.

4.9· We pass to the construction of the isotopies φ. ., 1 < i < re. We shall construct them suc-

cessively in such a way that the following conditions are satisfied (here and later we denote by τ.

the number 1 + 1/27'"1 - (Ϋ - l)/2'(3n - l), 0 < i < n):

1 {φ), φ. t depends continuously on g;

2 (0). (φ. ; ) ^ ._1/ ; / (if; 7\) C lj,~1(d; r. + £._χ), where 1 < i < n, l<i' < re, and if runs through

(1) for all i ' : the points dividing each of the intervals [- r., - r ], [r , r] into 3" ' - 1 equal

parts, including the end points, and also

(2) for 1 < i' < i: a) the multiples of l / 2 / + 2 · 3 2 " " ' " 1 i n the interval

b) the points dividing each of the intervals

into 3"~ l(3" - l) equal parts, including the end points;

(3) for i + 1 < ί' < η: the multiples of l/27 · 3"~ t " 1 in the interval [- r n, rj;

3 (<^). ΦίΛ = e on Rn\(<t>jii-1\gj-ll"._1 for t > 1, and on /?n\g ;._x/" for i = 1;

4 (</>). 0 . . is a δ. .-isotopy, where δ. . = η./2} and η. depends on i but not on / or g;

5 (φ), if g_ 1 / i / C± 1; 2) = / έ - ( ± 1; 2) for some i', 1 < i ' < ra, then for all ί € [θ, l] we have

( < ^ . ) t / . , ( + 1; 2) = / . , ( + 1; 2).

4.10. Let us show that the Φ. = Φ.(Φ._ ) = ̂ . ψ . ( Φ . _ 1 ) 1 satisfy the conditions 1-5 (Φ) if the

isotopies φ. £ possess properties 1—5 (φ) and the φ. properties 1—5 (i/O·

Clearly 1 (Φ), 4 (Φ), and 5 (Φ) follow from the corresponding properties of the φ. and φ.. We

show that 2(Φ) follows from 2(ψ) and 2(ςό) for i = n. In fact, by the latter,

(<¥iAgi-ih(d; rn)d iV^1 (d; rn + e^),



LOCAL CONTRAGTIBILITY OF HOMEOMORPHISMS 327

where 1 < i < η, τ^ = 1 + l/27, and d runs through exactly the values referred to in 2 (Φ) (the num-

bers in conditions (1) and (3) of 2 (φ) disappear, while those in conditions (2)a) and (2)b) become

the numbers in conditions 2 (0)a) and 2 (<J>)b) respectively).

By 2 (<//), we have

(Φ/)ι£/-ιΛ [d\ 1 -l· -j) (Ψ/Χ (<Ρ/.Λ (Φ/-χ)^/-ι /i [d; 1 -h ^ T ) CI / ^ ( d ; rrt -f 8 /_0.

Property 3 (Φ) follows from 3 (φ), 3 (^), and the fact that

by 2(g ).

4.11. We introduce some notation. Let r. , 0 < i < n, as above, denote the number

._, 1 3 ' ' — 1

2/-i

1

2' (3η-1)

-—

1

in particular,

We shall call the numbers d in condition 2 (ςά), related to i ' , points of division of order (/', i, i '),

where, since / is fixed, we may omit the index / and write {i, i ). Thus for i' > i the numbers of

order (ί, i ) are

a) the multiples of l/2 ' · 3 " " 1 in [-rn, rj,

b) the numbers dividing each of the intervals [- r , - r ] and [r , r ] into 3 " " 1 - 1 equal parts;

and for i < i

a) the multiples of l / 2 ' + 1 l2^^1 in [- TR + l /2 / + 1 , rn - l / 2 y + 1 ] ,

b) the numbers dividing each of the intervals [- rn, - r + l / 2 ; + 1 ] , [r - l /2 y + 1 , r ] into

3""1(3' ! - l) equal parts,

c) the numbers dividing each of the intervals [- r£, r ], [rn, r] into 3"" 1 - 1 equal parts.

We note that the formally defined points of order (/, 0, i ) coincide with those of order

(/ — 1, n, i ), and also that in going from the points of order (f — 1, i ) to those of order (i, i ),

i 4 i , each third point remains.

Between r. and τ. there is just one number of order (i — I, i ) for all i , namely

2 ! 2'-1 21-1 (3" — l )

We denote it by r.

4.12. Arguing by induction, suppose that the first i — 1 steps have been carried out, and so a
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h o m e o m o r p h i s m g . _ , h a s b e e n c o n s t r u c t e d , e q u a l t o g _ , i n t h e c a s e ί = 1, a n d for ί > 1 e q u a l t o

ty-.i-Λβ,-ΐ'where

1 (g )· £·-ι depends continuously on g;

2 ( g ) . g"._1li,{d;ri_^)cl.',~1(d;r._l + e._l),whete l<i' <n a n d d r u n s t h r o u g h t h e p o i n t s o f

order (i - 1, i ' ) ;

3(g). If for some i', 1 < t ' < n, g . - ^ / U 1; 2) = 1., (+ 1; 2), then g.^7. ,(± 1; 2) = /.,( + 1; 2).

These properties follow for ί = 1 from conditions 1—3 (g_.) , and for ί > 1 from the induction

hypotheses on φ. , namely 1 (φ), 2 (φ), and 5 {φ), with i replaced by i - 1.

We see that the induction can be started.

4.13· We mention again that the purpose of the isotopy φ. . is to multiply by approximately

2 · 3 " " 1 the number of "correct" cubes of the form /. ,(d; r). We shall base this construction on the

lemma of §3- In this construction, as we know, there is a violation of the conditions 2(g) for

"correct" cubes in the orthogonal directions. Namely, the image of /. , {d; r.), i ^ i, goes outside

the zone / Λ (d; r. + €._,), although it remains in Π. ,{d — f. _., d ' + £ _ , ; r • + f ·_,), where d' and

d" are the points of order (i — 1, i ') adjacent to d. In the construction of φ. . we take these viola-

tions into account and make the necessary corrections. However we cannot correct the situation for

all the cubes 7£, (d; r), where d € [- r ; , r{] has order (i - 1, i ' ) , since the images of these cubes

cease to be separated by hyperplanes of the form R. ι . However the images of the cubes

I. ,{d; r), where d runs through the points of order (i, i'), are nevertheless separated, and we can

arrange that for them the condition of type 2(g) is again satisfied.

We construct φ. . as the product of an isotopy φ. . for which {φ. P o = e, and a homeomorphism

equal to {φ. . , ) , for i > 1 and equal to e for ί = 1. In its turn, in accordance with what has been

said above, φ . . is constructed as the product of two isotopies, φ, .= ψ. .φ. ., the purpose of

φ. . being to multiply by roughly 2 · 3" the number of "correct" cubes orthogonal to the ith axis,

and of φ. . being to correct the violations which arise in the orthogonal directions, this correction

being made only for the points of order {i, i ) for all i ' ^ i, so that we lose approximately two thirds

of the correct cubes in each of these directions.

It is clear that as a result of the construction of all the isotopies φ. ., 1 < i < ra, for each

axis there is one multiplication by 2 · 3" of the number of correct cubes and re - 1 times a reduc-

tion to one third. Thus altogether the number of correct cubes is (roughly) doubled for each axis.

4.14. We construct the correcting isotopy ψ. . at once. We form it as the product of the isoto-

pies ζ . . ι ,, taken in an arbitrary order, where

Zl.r.d = li> (d' — 2ey_lf d'— BHI, d — ei-itd; r + ε,-^, r M - e H )

1 < ί < η, i ^ ί, d runs through the points of order (i, i ), and d', d" ate the points of order

(i - 1, i ') adjacent to d on the left and right respectively.
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Since the d i s t a n c e b e t w e e n neighboring p o i n t s of order {i - 1, ι'•') c a n only be

31-1 1 1 1
—: , , • , or

V • (3Λ — I) 2 ' + 1 - 3 2 t ~ i 2 / + 1 . 3 " - ' - 1 . ( 3 " _ 1) 2> • S1-1

and none of these numbers is greater than l / 2 ; , it follows that each ζ . . , i s a l/2 ; -isotopy.

Hence φ. . is an n/2 ; -isotopy. Moreover, none of these numbers i s le s s than 4e._. = l / 2 ; + I · 32™,
^' l ^ ^ ι

and therefore the supports of the isotopies ζ . . , and ζ . . , , , are disjoint.

4.15. The φ . . possess the following properties, which, like those of φ., follow easily from

the properties of isotopies of type ζ and the definition of the φ. .:

1 (φ), φ. is independent of g;

2 (φ) ( l ) QJ ) f>~l(d· 7+ ί ) = lei~^d, τ. + e._ ) or a l l numbers d of order (i, i),
" ' -j, t i t ; ~ 1 i l » L

2 ( φ ) ( 2 ) . ( φ . ) A U . , U ' - e . _ , , d " + £ . _ : F + e . ) f ] R . ( - r . - t . ., r . + e . , ) ) c

l/r^id; r. + e._ ), where d, d', d", i are as in the construction of ι/r . in 4.14;

3 (Ψ)· $ μ Ξ « on R n \ I ^ l ^ j _ i ;

4 (ψ). %,· is an — -isotopy;
2'

5 (Ψ). (Ψ/,ί),Λ' ( ± 1 , 2) - /,' ( ± 1; 2) for all ί and i ' .

4.16. The isotopy φ is constructed so as to fulfill the following requirements:

1 {φ), φ- ι depends continuously on g;

2 (φ) (1). (φ. .) F._/.((f; r)ci.'~1(d; T~+ e._.), where rf runs through the points of order (i, i),

2 ( ? ) (2). ($._ , ) 1 g._ 1 / i ,(rf; r.) ClI. , ( < / ' - i . ^ , rf" + ί.^; Γ + e.^) Π Λ . ( - Γ . - ί._γ τ. + e._J, where d

runs through the points of order (i, i '), i' 4 i, and d ', d" are the points of order (i - 1, i )

adjacent to d;

3 (φ), φ. . = e on «n\g. ./" ·
; » ι ' ° i ~ l r i ~ i '

4 ((έ). ςή. . is a δ . -isotopy, where δ . . = η ./21 and η . is independent of / and g;

5 (φ), if g j - ^ j ' ( ± 1; 2) = / . < ( + 1; 2) for some i ' , 1 < i ' < re, then for all t we have

(φ. .) / . , ( + 1; 2) = / . , ( + 1; 2).

4.17. Let us show that conditions {φ) follow from the conditions {φ) and {φ). We recall that φ. . =

φ. Αφ. ̂ χ \ for i > 1 and ςά. χ= φ. {φ. i for i = 1. The conditions 1, 2, 4, 5 (ςέ) follow directly from the

corresponding conditions {φ) and {φ). Condition 3 (0)follows from3 (φ) and 3 (ι/Ο, since by 2 (g) it is

obvious that g._j (<9Γ _ ) C Λ"\/ρ ._ -f._ , and so R"\'g^1 Ρ._ C Λπ\/"._ . But 0 = e on

Rn\~g. Jn , while φ. .= e on Rn\ln

4.18. We construct φ. . as the composition of κ isotopies y . . 1 < A < κ, where κ + 1 is the

number of points of order (i — 1, i ) in the interval [- r , r ], including the end points

(κ = 2 · 3"~ 1 (2 '+ 1 ) - 2).

In its turn, γ . . , is constructed as the product of an isotopy ν ,, where (y. . . ) Λ = e. and a
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homeomorphism equal to e for k = 1 and to (y. _ ) for k > 1.
]t it k 1 1

Let dQ, d^, · · · , dK be the division points of order (ί - 1, i) in [- r , τ ]. One isotopy y. . ,

is constructed for each interval Vdk_^, <Zft], 1 < k < κ, the interval [d , d ] also being employed in

the construction of y. . k. For the case k = κ we take as dK + l the neighboring point of order

(ί - 1, i) on the right of ^K = r

n, and as d_χ we take the neighboring point of order (i - 1, i) on the

left of dQ = - τn. We construct y . . k so as to fulfill the requirements

1 (y). y . . j depends continuously on g;

2 (y) (1). (y. . ft)x g i_1/£(J; r.) C/. ; He?; F + ί._χ), where c? runs through the points of order

where 1 < i <n,i'^i, and d ', d" are the points of order (i — 1, ι ') adjacent to </;

3 W - V,, i > t - « «η Λ Λ ^ ^ Π / ^ . ! , ^ + 1 ; Γ._χ), ( y . _ i , ) 1 = e on « Λ ^ ^ Π Χ ^ ^ , ^ ; r . ^ ) ;

4 W · λ',-,ί,Α i s a 8j,i,k'lsotopY' w h e r e δ

; > ί ΐ ί : = ^i./j/27 a n d i7£>ft

 i s independent of /, k, and g;

5 (y). if g £ _ 1 / i , (+ 1; 2) = /. ,(+ 1; 2) for some i ' , 1 < i' <n, then (y. . ^ ) / ; / ( ± 1; 2) =

/.(+ 1; 2) for all ί and all k.

4.19. Conditions {φ) follow from conditions (y), taken for all h, 1 < k < κ , if we define φ. .

as Χ.- ; x ° X• ; 2 ° ' ' ' ° ^ ; i κ ' Namely, 1, 3, 5 (<£) follow at once from the corresponding condi-

tions (y). Condition 4 {φ) follows from 4 (y) and 3 (y), since by 3 (y) (1) and 3 (y) (2) the supports

of the homeomorphism (y. • . ) , and the isotopy y . . , + . are disjoint for 1 < k < κ — 1. Thus

{φ. Ρ moves each point, for each t, by no more than δ. . k, which by 4 (y) is independent of k.

Condition 2 (<̂>) follows from 2 (y), taken for all k, 1 < k < κ , since the supports of the homeomor-

phisms (y. { k)χ are disjoint by 3 (y) (2).

4.20. As we have already observed, it follows from conditions 3 (y) that the isotopies y . . k

are so constructed that S(y. . ,) fl S((y. . ,_,).) = Λ for k > 1. Therefore we can construct these

isotopies independently of one another. We effect the construction of the isotopies y . . k on the

basis of the lemma on the correction of homeomorphisms.

We apply the following case of this lemma:

The axis ox. is fixed for a given value of i, the numbers r , Τ, and r^ of the lemma are our

respective numbers ?" , F, r ;, for i' ^ i the numbers αί; , k of the lemma are the numbers of order

(i - 1, »'), and dQ, «Ζ , c/2, d^ are <Zi._2j ^^.-^ f̂t> ^k+i r e s P e c t i v e l y - Finally, the c ; of the lemma

are the numbers of order (i, i) interior to [d,_, </,]. If t = £._., then the condition that the i-zones
Λ 1 ft } ί

of the cubes l^id; r ) referred to in the lemma are disjoint is satisfied, as was shown above in 4.14.

Now let the homeomorphism g of the lemma be g ^ j . Then by 2 (g ) it satisfies condition (*),

and so we may construct an isotopy X(g\_,) with the properties 1—3 (X). It is easy to verify that

j_ x) can be taken as the required isotopy γ. { fc.

Indeed, conditions 1-3 (y) follow at once: 1 (y) from 1 (X) and 1 (g), and 2 (y) , 3 (y) from
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from 2 (X), 3 (X) respectively. As for 4 (γ), it follows from the estimates given in 3-19- For by

condition 4 (X) there, X (g;_j) is an f{n, λ) {η + 2e)-isotopy, where f{n, λ) depends only on n and λ.

But, as is easily computed, λ is equal to 7 · 3" ' or 3" - 1 according as [dk_1, d^\ lies in

or in one of the intervals

In either case λ is less than 3™, and so f(n, λ) is less than some number depending only on n, and

in particular independent of k.

On the other hand, η and f are less than l/2 ; *, and therefore we obtain that X(7£_j) is an

/(n)/2;-isotopy, where / in) depends only on n.

Finally, condition 5 (y) follows from 5 (X) (see 3.19) in the case when dk ^ ± 1, while if

dp. - ± 1 w e alter the construction of X in accordance with the Remark in 3-20.

Thus all the conditions 1 — 5 (y) are satisfied, and the proof is complete.

§5. Corollaries and remarks

5.1. We first remak that Proposition (B) can be strengthened in various ways. For example, it

can be stipulated that the isotopies H(g) are constructed for all homeomorphisms subordinate to some

majorant / on 0, in such a way that when the homeomorphism is the identity on D the isotopy is

the identity on D\O ' . Also, not just one but any finite number of such sets may be taken. Further,

as is easily seen from the proof, if D is a locally flat submanifold of Μ then in the statement of (B)

the neighborhood 0 can be omitted; that is, an isotopy can be constructed which is the identity on

the whole of D. We do not know whether this can be done if D is an arbitrary polyhedron (even one

with handles) or, indeed, an arbitrary compact set.

5.2. Some applications to stable manifolds (see [1 3]) can be made simply on the basis of the

local linear connectedness of § {M). We note that the isotopies constructed in the proof of (B) do

not take a homeomorphism out of its stable class. Hence we obviously deduce

Corollary 1. The stable classes in the group § {M) coincide with the components of linear

connectedness of the group § (M).

Corollary 2. If a homeomorphism can be approximated by stable ones then it is itself stable

(cf. [14]).

5.3· We further note the

Corollary 3. // D is a closed subset of the manifold M, and D a closed subset of Μ lying in

Int D, then there is a neighborhood Ω(ε) in § {M) such that for every homeomorphism h in this

neighborhood a homeomorphism of the manifold can be found which depends continuously on h and is

equal to h on D ' and to e on M\D.

From this it can easily be deduced that the covering homotopy axiom is satisfied in the space of

imbeddings of manifolds with normal microfibrations. However we shall not enter into this in detail
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here, since by means of a certain modification of the present method we shall, in a later paper, ex-

tend these results to the space of locally flat imbeddings, from which, in particular, the covering

homotopy theorem will also follow for the space of these imbeddings, represented as a factor space

of the group of homeomorphisms of the enveloping manifold.

5.4. While the present manuscript was in course of publication, it became known that two

American mathematicians—Kirby and Siebenmann—had constructed piecewise linear homeomorphisms

of a multi-dimensional torus which were arbitrarily close to the identity, but not piecewise linear

isotopic to the identity. Thus the main result of this paper does not carry over to piecewise linear

(nor, consequently, smooth) homeomorphisms. Moreover, using the fact that, by the theorem we have

proved here, their homeomorphisms are isotopic to the identity in the topological sense, Kirby and

Siebenmann deduced that the known obstructions to the existence and uniqueness of piecewise linear

structures taking values in the group π^ (Top/pl) can be nontrivial, and so this group is Z2 (and not

null). This implies the existence of combinatorially nontriangulable and also of combinatorially non-

equivalent piecewise linear structures on certain manifolds (in particular, on tori). We remark that

this also implies the existence of nonapproximable piecewise linear locally flat imbeddings of piece-

wise linear manifolds of codimension unity. For, as we stated in the preceding subsection, by the

method of this paper it can be shown that sufficiently close locally flat imbeddings (of codimension

different from 2) are isotopic. Thanks to this fact, it may be easy, using the piecewise linear

approximability of imbeddings of codimension unity, to prove the triangulability of an arbitrary

topological manifold by induction on the number of coordinate neighborhoods of the manifold.

Further, it is not hard to show that imbeddings of manifolds of the form Sp χ Sq in Rn, where

ρ + q = η — 1, can already be piecewise linear nonapproximable.
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